亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unified Model Based on Reinforced Feature Reconstruction for Metro Track Anomaly Detection

异常检测 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 异常(物理) 特征提取 噪音(视频) 目标检测 推论 数据挖掘 计算机视觉 图像(数学) 语言学 哲学 物理 凝聚态物理
作者
Mengfei Duan,Liang Mao,Ruikang Liu,Weiming Liu,Zhongbin Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5025-5038
标识
DOI:10.1109/jsen.2023.3348118
摘要

Metro track anomaly detection can prevent accidents, thus avoiding severe life safety and property losses. Unsupervised methods that rely on one model per category or scene are unsuitable for complex and diverse track environments and unified detection, exhibiting poor stability. For most feature-based methods, the multi-stage features extracted by the pre-trained model contain the redundant information and noise, which interferes the feature reconstruction and anomaly detection. Additionally, the presence of abnormal information in the reconstructed feature further degrades the performance of anomaly detection. To address the aforementioned issues, a unified anomaly detection model based on feature reconstruction, named Reinforced Feature Reconstruction-based Anomaly Detection Network (RFReconAD), is proposed. The proposed efficient channel feature reinforcement module cooperated with the designed loss function weakens the interference of redundant information and noise on feature reconstruction task. The layer-wise learnable queries embedded in the decoder alleviate the problem of anomaly reconstruction. Moreover, the proposed detection scheme achieves more accurate anomaly detection. Under unified training and inference, our method achieves 99.8% and 98.2% Image-level AUROC, as well as 99.2% and 97.2% Pixel-level AUROC, on the Track Foreign Object Detection dataset and MVTec-AD dataset, respectively; And its inference speed reaches 37 frames/s, outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYQ完成签到 ,获得积分10
10秒前
努力做实验的菜菜完成签到,获得积分20
18秒前
跳跃梨愁完成签到 ,获得积分10
19秒前
TiAmo完成签到 ,获得积分10
36秒前
研友_VZG7GZ应助刘文采纳,获得10
40秒前
努力做实验的菜菜关注了科研通微信公众号
41秒前
47秒前
身法马可波罗完成签到 ,获得积分10
50秒前
李剑鸿完成签到,获得积分10
51秒前
刘文发布了新的文献求助10
52秒前
李剑鸿发布了新的文献求助100
57秒前
58秒前
刘文完成签到,获得积分10
1分钟前
1分钟前
圆圆完成签到 ,获得积分10
1分钟前
JamesPei应助漫步随心采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
兔图图完成签到 ,获得积分10
1分钟前
2分钟前
特特雷珀萨努完成签到 ,获得积分10
2分钟前
漫步随心发布了新的文献求助10
2分钟前
云雨完成签到 ,获得积分10
2分钟前
2分钟前
纯真的柚子完成签到 ,获得积分10
2分钟前
朴素的山蝶完成签到 ,获得积分10
2分钟前
木木完成签到 ,获得积分20
2分钟前
cheney完成签到 ,获得积分10
3分钟前
3分钟前
顾矜应助lele采纳,获得10
3分钟前
开霁完成签到 ,获得积分10
3分钟前
谐音梗别扣钱完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
研友_8RyzBZ发布了新的文献求助10
4分钟前
4分钟前
ding应助甜美的起眸采纳,获得10
4分钟前
ZTLlele完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302418
求助须知:如何正确求助?哪些是违规求助? 4449576
关于积分的说明 13848484
捐赠科研通 4335789
什么是DOI,文献DOI怎么找? 2380540
邀请新用户注册赠送积分活动 1375535
关于科研通互助平台的介绍 1341770