Unified Model Based on Reinforced Feature Reconstruction for Metro Track Anomaly Detection

异常检测 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 异常(物理) 特征提取 噪音(视频) 目标检测 推论 数据挖掘 计算机视觉 图像(数学) 语言学 哲学 物理 凝聚态物理
作者
Mengfei Duan,Liang Mao,Ruikang Liu,Weiming Liu,Zhongbin Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5025-5038
标识
DOI:10.1109/jsen.2023.3348118
摘要

Metro track anomaly detection can prevent accidents, thus avoiding severe life safety and property losses. Unsupervised methods that rely on one model per category or scene are unsuitable for complex and diverse track environments and unified detection, exhibiting poor stability. For most feature-based methods, the multi-stage features extracted by the pre-trained model contain the redundant information and noise, which interferes the feature reconstruction and anomaly detection. Additionally, the presence of abnormal information in the reconstructed feature further degrades the performance of anomaly detection. To address the aforementioned issues, a unified anomaly detection model based on feature reconstruction, named Reinforced Feature Reconstruction-based Anomaly Detection Network (RFReconAD), is proposed. The proposed efficient channel feature reinforcement module cooperated with the designed loss function weakens the interference of redundant information and noise on feature reconstruction task. The layer-wise learnable queries embedded in the decoder alleviate the problem of anomaly reconstruction. Moreover, the proposed detection scheme achieves more accurate anomaly detection. Under unified training and inference, our method achieves 99.8% and 98.2% Image-level AUROC, as well as 99.2% and 97.2% Pixel-level AUROC, on the Track Foreign Object Detection dataset and MVTec-AD dataset, respectively; And its inference speed reaches 37 frames/s, outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷小仙儿完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
PeterPeng34完成签到,获得积分10
1秒前
1秒前
饭勺小子完成签到,获得积分10
1秒前
2秒前
坚强的觅露完成签到 ,获得积分10
3秒前
可爱的函函应助HL采纳,获得10
3秒前
CodeCraft应助Cmiudz采纳,获得10
3秒前
姜问柳发布了新的文献求助10
3秒前
3秒前
Xiang发布了新的文献求助10
4秒前
机智涵阳完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
希希完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
liangguangyuan完成签到 ,获得积分10
6秒前
所所应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439470
求助须知:如何正确求助?哪些是违规求助? 4550649
关于积分的说明 14225656
捐赠科研通 4471747
什么是DOI,文献DOI怎么找? 2450474
邀请新用户注册赠送积分活动 1441297
关于科研通互助平台的介绍 1417901