Unified Model Based on Reinforced Feature Reconstruction for Metro Track Anomaly Detection

异常检测 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 异常(物理) 特征提取 噪音(视频) 目标检测 推论 数据挖掘 计算机视觉 图像(数学) 语言学 哲学 物理 凝聚态物理
作者
Mengfei Duan,Liang Mao,Ruikang Liu,Weiming Liu,Zhongbin Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5025-5038
标识
DOI:10.1109/jsen.2023.3348118
摘要

Metro track anomaly detection can prevent accidents, thus avoiding severe life safety and property losses. Unsupervised methods that rely on one model per category or scene are unsuitable for complex and diverse track environments and unified detection, exhibiting poor stability. For most feature-based methods, the multi-stage features extracted by the pre-trained model contain the redundant information and noise, which interferes the feature reconstruction and anomaly detection. Additionally, the presence of abnormal information in the reconstructed feature further degrades the performance of anomaly detection. To address the aforementioned issues, a unified anomaly detection model based on feature reconstruction, named Reinforced Feature Reconstruction-based Anomaly Detection Network (RFReconAD), is proposed. The proposed efficient channel feature reinforcement module cooperated with the designed loss function weakens the interference of redundant information and noise on feature reconstruction task. The layer-wise learnable queries embedded in the decoder alleviate the problem of anomaly reconstruction. Moreover, the proposed detection scheme achieves more accurate anomaly detection. Under unified training and inference, our method achieves 99.8% and 98.2% Image-level AUROC, as well as 99.2% and 97.2% Pixel-level AUROC, on the Track Foreign Object Detection dataset and MVTec-AD dataset, respectively; And its inference speed reaches 37 frames/s, outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
EE完成签到,获得积分10
1秒前
多远的未来完成签到,获得积分10
3秒前
薯条发布了新的文献求助10
4秒前
GingerF应助wang采纳,获得20
4秒前
斯坦森完成签到,获得积分10
5秒前
Momomo应助Gloriauuu采纳,获得10
5秒前
吸气肌训练完成签到,获得积分10
6秒前
如意的玉米完成签到,获得积分10
6秒前
华仔应助alive采纳,获得10
7秒前
李健应助xxx采纳,获得10
8秒前
Aria完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
高乐高完成签到,获得积分10
9秒前
17完成签到 ,获得积分10
10秒前
10秒前
芒琪完成签到 ,获得积分10
10秒前
光亮灯泡完成签到,获得积分10
11秒前
11秒前
Summering666完成签到,获得积分10
12秒前
14秒前
runpeng完成签到,获得积分10
14秒前
葛一豪发布了新的文献求助10
15秒前
16秒前
我是老大应助小米采纳,获得10
16秒前
17秒前
孝陵卫黑旋风完成签到,获得积分0
17秒前
18秒前
18秒前
123发布了新的文献求助50
20秒前
Gloriauuu完成签到,获得积分20
20秒前
IP41320发布了新的文献求助10
20秒前
junyang发布了新的文献求助10
21秒前
alive发布了新的文献求助10
23秒前
内向的萃完成签到,获得积分20
23秒前
量子星尘发布了新的文献求助10
24秒前
cytokines完成签到,获得积分10
24秒前
26秒前
26秒前
小二郎应助小巧的傲松采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484018
求助须知:如何正确求助?哪些是违规求助? 4584400
关于积分的说明 14397554
捐赠科研通 4514326
什么是DOI,文献DOI怎么找? 2473935
邀请新用户注册赠送积分活动 1459937
关于科研通互助平台的介绍 1433268