重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Unified Model Based on Reinforced Feature Reconstruction for Metro Track Anomaly Detection

异常检测 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 异常(物理) 特征提取 噪音(视频) 目标检测 推论 数据挖掘 计算机视觉 图像(数学) 语言学 哲学 物理 凝聚态物理
作者
Mengfei Duan,Liang Mao,Ruikang Liu,Weiming Liu,Zhongbin Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5025-5038
标识
DOI:10.1109/jsen.2023.3348118
摘要

Metro track anomaly detection can prevent accidents, thus avoiding severe life safety and property losses. Unsupervised methods that rely on one model per category or scene are unsuitable for complex and diverse track environments and unified detection, exhibiting poor stability. For most feature-based methods, the multi-stage features extracted by the pre-trained model contain the redundant information and noise, which interferes the feature reconstruction and anomaly detection. Additionally, the presence of abnormal information in the reconstructed feature further degrades the performance of anomaly detection. To address the aforementioned issues, a unified anomaly detection model based on feature reconstruction, named Reinforced Feature Reconstruction-based Anomaly Detection Network (RFReconAD), is proposed. The proposed efficient channel feature reinforcement module cooperated with the designed loss function weakens the interference of redundant information and noise on feature reconstruction task. The layer-wise learnable queries embedded in the decoder alleviate the problem of anomaly reconstruction. Moreover, the proposed detection scheme achieves more accurate anomaly detection. Under unified training and inference, our method achieves 99.8% and 98.2% Image-level AUROC, as well as 99.2% and 97.2% Pixel-level AUROC, on the Track Foreign Object Detection dataset and MVTec-AD dataset, respectively; And its inference speed reaches 37 frames/s, outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江阳宏发布了新的文献求助10
刚刚
刚刚
鸡蛋清abc发布了新的文献求助10
刚刚
中央戏精学院完成签到,获得积分10
刚刚
丁静完成签到 ,获得积分0
1秒前
2秒前
2秒前
边宇发布了新的文献求助10
2秒前
祝英台完成签到,获得积分10
3秒前
wanci应助郝好东采纳,获得10
3秒前
4秒前
4秒前
苗条寒荷发布了新的文献求助10
4秒前
深情安青应助王亚琪采纳,获得10
5秒前
舒伯特完成签到 ,获得积分10
7秒前
7秒前
慕青应助江阳宏采纳,获得10
7秒前
脑洞疼应助AXX041795采纳,获得10
7秒前
青年才俊发布了新的文献求助10
8秒前
思量博千金完成签到,获得积分10
8秒前
9秒前
11发布了新的文献求助10
9秒前
325715完成签到,获得积分10
10秒前
ll发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
asdasdq发布了新的文献求助10
12秒前
汉堡包应助zhengba采纳,获得30
13秒前
hyyyh发布了新的文献求助10
14秒前
14秒前
烟花应助鸡蛋清abc采纳,获得10
17秒前
17秒前
老实芭蕉完成签到,获得积分10
18秒前
大大杰尼龟完成签到,获得积分20
19秒前
852应助研友_8QyXr8采纳,获得30
20秒前
Akim应助忧虑的访梦采纳,获得10
20秒前
San万发布了新的文献求助10
22秒前
bkagyin应助刘安成采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468049
求助须知:如何正确求助?哪些是违规求助? 4571603
关于积分的说明 14330660
捐赠科研通 4498112
什么是DOI,文献DOI怎么找? 2464315
邀请新用户注册赠送积分活动 1453064
关于科研通互助平台的介绍 1427739