Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems

计算机科学 人口 数学优化 初始化 水准点(测量) 进化策略 最优化问题 元启发式 算法 人工智能 数学 进化算法 人口学 大地测量学 社会学 程序设计语言 地理
作者
Jiaxu Huang,Haiqing Hu
出处
期刊:Journal of Big Data [Springer Nature]
卷期号:11 (1) 被引量:24
标识
DOI:10.1186/s40537-023-00864-8
摘要

Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. However, the convergence speed and optimization performance of BWO still have some performance deficiencies when solving complex multidimensional problems. Therefore, this paper proposes a hybrid BWO method called HBWO combining Quasi-oppositional based learning (QOBL), adaptive and spiral predation strategy, and Nelder-Mead simplex search method (NM). Firstly, in the initialization phase, the QOBL strategy is introduced. This strategy reconstructs the initial spatial position of the population by pairwise comparisons to obtain a more prosperous and higher quality initial population. Subsequently, an adaptive and spiral predation strategy is designed in the exploration and exploitation phases. The strategy first learns the optimal individual positions in some dimensions through adaptive learning to avoid the loss of local optimality. At the same time, a spiral movement method motivated by a cosine factor is introduced to maintain some balance between exploration and exploitation. Finally, the NM simplex search method is added. It corrects individual positions through multiple scaling methods to improve the optimal search speed more accurately and efficiently. The performance of HBWO is verified utilizing the CEC2017 and CEC2019 test functions. Meanwhile, the superiority of HBWO is verified by utilizing six engineering design examples. The experimental results show that HBWO has higher feasibility and effectiveness in solving practical problems than BWO and other optimization methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助123456采纳,获得10
1秒前
daicy发布了新的文献求助10
4秒前
呼初南完成签到 ,获得积分20
4秒前
5秒前
6秒前
6秒前
7秒前
丁鹏笑完成签到 ,获得积分0
7秒前
量子星尘发布了新的文献求助10
7秒前
热心采白完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
刘丰铭发布了新的文献求助10
10秒前
韩笑发布了新的文献求助10
11秒前
123456发布了新的文献求助10
12秒前
Seek发布了新的文献求助50
13秒前
Liurthis关注了科研通微信公众号
13秒前
热心采白关注了科研通微信公众号
13秒前
Log发布了新的文献求助10
13秒前
luis应助科研通管家采纳,获得10
14秒前
wy.he应助科研通管家采纳,获得10
14秒前
一一应助科研通管家采纳,获得20
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
tuanheqi应助科研通管家采纳,获得150
14秒前
14秒前
14秒前
wanci应助科研通管家采纳,获得10
14秒前
老福贵儿应助科研通管家采纳,获得10
14秒前
buno应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
wy.he应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
buno应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
一一应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
luis应助科研通管家采纳,获得10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039