Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems

计算机科学 人口 数学优化 初始化 水准点(测量) 进化策略 最优化问题 元启发式 算法 人工智能 数学 进化算法 人口学 大地测量学 社会学 程序设计语言 地理
作者
Jiaxu Huang,Haiqing Hu
出处
期刊:Journal of Big Data [Springer Nature]
卷期号:11 (1) 被引量:24
标识
DOI:10.1186/s40537-023-00864-8
摘要

Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. However, the convergence speed and optimization performance of BWO still have some performance deficiencies when solving complex multidimensional problems. Therefore, this paper proposes a hybrid BWO method called HBWO combining Quasi-oppositional based learning (QOBL), adaptive and spiral predation strategy, and Nelder-Mead simplex search method (NM). Firstly, in the initialization phase, the QOBL strategy is introduced. This strategy reconstructs the initial spatial position of the population by pairwise comparisons to obtain a more prosperous and higher quality initial population. Subsequently, an adaptive and spiral predation strategy is designed in the exploration and exploitation phases. The strategy first learns the optimal individual positions in some dimensions through adaptive learning to avoid the loss of local optimality. At the same time, a spiral movement method motivated by a cosine factor is introduced to maintain some balance between exploration and exploitation. Finally, the NM simplex search method is added. It corrects individual positions through multiple scaling methods to improve the optimal search speed more accurately and efficiently. The performance of HBWO is verified utilizing the CEC2017 and CEC2019 test functions. Meanwhile, the superiority of HBWO is verified by utilizing six engineering design examples. The experimental results show that HBWO has higher feasibility and effectiveness in solving practical problems than BWO and other optimization methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
末鸭梨发布了新的文献求助10
刚刚
1秒前
独特四娘发布了新的文献求助10
1秒前
体贴的戾完成签到,获得积分10
1秒前
jia发布了新的文献求助10
1秒前
情怀应助酷狗小熊采纳,获得30
2秒前
xuxuux完成签到,获得积分10
2秒前
晶晶完成签到,获得积分10
2秒前
sdwdw完成签到,获得积分20
2秒前
2秒前
hh完成签到,获得积分10
3秒前
科研通AI2S应助莫宝采纳,获得30
3秒前
美女完成签到,获得积分10
4秒前
Thadea关注了科研通微信公众号
4秒前
coco发布了新的文献求助10
4秒前
4秒前
sdwdw发布了新的文献求助10
5秒前
老杨完成签到,获得积分10
5秒前
chifer关注了科研通微信公众号
5秒前
roy2929发布了新的文献求助20
5秒前
今后应助醉熏的小伙采纳,获得10
6秒前
魔人啾啾完成签到,获得积分10
6秒前
吴开珍发布了新的文献求助30
7秒前
哆啦A梦发布了新的文献求助10
7秒前
刘荣圣发布了新的文献求助10
7秒前
田様应助肖敏采纳,获得10
7秒前
8秒前
8秒前
xiaowentu完成签到,获得积分10
8秒前
easyaction完成签到,获得积分10
9秒前
酷波er应助qiyihan采纳,获得10
10秒前
小马甲应助敬之采纳,获得10
10秒前
正一笑完成签到,获得积分10
10秒前
10秒前
10秒前
浮游应助Alon采纳,获得10
10秒前
科目三应助123采纳,获得10
11秒前
Sheng应助槑槑采纳,获得10
11秒前
wushuai完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688