Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems

计算机科学 人口 数学优化 初始化 水准点(测量) 进化策略 最优化问题 元启发式 算法 人工智能 数学 进化算法 人口学 大地测量学 社会学 程序设计语言 地理
作者
Jiaxu Huang,Haiqing Hu
出处
期刊:Journal of Big Data [Springer Nature]
卷期号:11 (1) 被引量:19
标识
DOI:10.1186/s40537-023-00864-8
摘要

Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. However, the convergence speed and optimization performance of BWO still have some performance deficiencies when solving complex multidimensional problems. Therefore, this paper proposes a hybrid BWO method called HBWO combining Quasi-oppositional based learning (QOBL), adaptive and spiral predation strategy, and Nelder-Mead simplex search method (NM). Firstly, in the initialization phase, the QOBL strategy is introduced. This strategy reconstructs the initial spatial position of the population by pairwise comparisons to obtain a more prosperous and higher quality initial population. Subsequently, an adaptive and spiral predation strategy is designed in the exploration and exploitation phases. The strategy first learns the optimal individual positions in some dimensions through adaptive learning to avoid the loss of local optimality. At the same time, a spiral movement method motivated by a cosine factor is introduced to maintain some balance between exploration and exploitation. Finally, the NM simplex search method is added. It corrects individual positions through multiple scaling methods to improve the optimal search speed more accurately and efficiently. The performance of HBWO is verified utilizing the CEC2017 and CEC2019 test functions. Meanwhile, the superiority of HBWO is verified by utilizing six engineering design examples. The experimental results show that HBWO has higher feasibility and effectiveness in solving practical problems than BWO and other optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuezhao完成签到,获得积分20
刚刚
实现零完成签到 ,获得积分10
1秒前
毛豆爸爸发布了新的文献求助10
3秒前
轩辕沛柔发布了新的文献求助30
4秒前
小蘑菇应助单纯的爆米花采纳,获得10
4秒前
星辰大海应助我要发文章采纳,获得10
4秒前
Gump完成签到,获得积分10
5秒前
巫马书桃发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
zz完成签到 ,获得积分10
6秒前
张占完成签到,获得积分10
6秒前
领导范儿应助lyn采纳,获得10
7秒前
7秒前
天御雪完成签到,获得积分10
8秒前
9秒前
小瓶子发布了新的文献求助10
9秒前
optical完成签到,获得积分10
9秒前
10秒前
深情安青应助123采纳,获得10
10秒前
10秒前
11秒前
科研通AI2S应助威威采纳,获得10
11秒前
越旻发布了新的文献求助10
11秒前
所所应助靓丽的访波采纳,获得10
11秒前
歪歪完成签到 ,获得积分10
11秒前
fengw420发布了新的文献求助10
11秒前
赘婿应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
mhl11应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
毛豆应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
yar应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312450
求助须知:如何正确求助?哪些是违规求助? 2945105
关于积分的说明 8522863
捐赠科研通 2620823
什么是DOI,文献DOI怎么找? 1433131
科研通“疑难数据库(出版商)”最低求助积分说明 664863
邀请新用户注册赠送积分活动 650231