计算机科学
人口
数学优化
初始化
水准点(测量)
进化策略
最优化问题
元启发式
算法
人工智能
数学
进化算法
人口学
大地测量学
社会学
程序设计语言
地理
作者
Jiaxu Huang,Haiqing Hu
标识
DOI:10.1186/s40537-023-00864-8
摘要
Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. However, the convergence speed and optimization performance of BWO still have some performance deficiencies when solving complex multidimensional problems. Therefore, this paper proposes a hybrid BWO method called HBWO combining Quasi-oppositional based learning (QOBL), adaptive and spiral predation strategy, and Nelder-Mead simplex search method (NM). Firstly, in the initialization phase, the QOBL strategy is introduced. This strategy reconstructs the initial spatial position of the population by pairwise comparisons to obtain a more prosperous and higher quality initial population. Subsequently, an adaptive and spiral predation strategy is designed in the exploration and exploitation phases. The strategy first learns the optimal individual positions in some dimensions through adaptive learning to avoid the loss of local optimality. At the same time, a spiral movement method motivated by a cosine factor is introduced to maintain some balance between exploration and exploitation. Finally, the NM simplex search method is added. It corrects individual positions through multiple scaling methods to improve the optimal search speed more accurately and efficiently. The performance of HBWO is verified utilizing the CEC2017 and CEC2019 test functions. Meanwhile, the superiority of HBWO is verified by utilizing six engineering design examples. The experimental results show that HBWO has higher feasibility and effectiveness in solving practical problems than BWO and other optimization methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI