亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems

计算机科学 人口 数学优化 初始化 水准点(测量) 进化策略 最优化问题 元启发式 算法 人工智能 数学 进化算法 人口学 大地测量学 社会学 程序设计语言 地理
作者
Jiaxu Huang,Haiqing Hu
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:11 (1) 被引量:24
标识
DOI:10.1186/s40537-023-00864-8
摘要

Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. However, the convergence speed and optimization performance of BWO still have some performance deficiencies when solving complex multidimensional problems. Therefore, this paper proposes a hybrid BWO method called HBWO combining Quasi-oppositional based learning (QOBL), adaptive and spiral predation strategy, and Nelder-Mead simplex search method (NM). Firstly, in the initialization phase, the QOBL strategy is introduced. This strategy reconstructs the initial spatial position of the population by pairwise comparisons to obtain a more prosperous and higher quality initial population. Subsequently, an adaptive and spiral predation strategy is designed in the exploration and exploitation phases. The strategy first learns the optimal individual positions in some dimensions through adaptive learning to avoid the loss of local optimality. At the same time, a spiral movement method motivated by a cosine factor is introduced to maintain some balance between exploration and exploitation. Finally, the NM simplex search method is added. It corrects individual positions through multiple scaling methods to improve the optimal search speed more accurately and efficiently. The performance of HBWO is verified utilizing the CEC2017 and CEC2019 test functions. Meanwhile, the superiority of HBWO is verified by utilizing six engineering design examples. The experimental results show that HBWO has higher feasibility and effectiveness in solving practical problems than BWO and other optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ning_完成签到 ,获得积分10
3秒前
闹闹完成签到 ,获得积分10
4秒前
9秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
深情安青应助科研通管家采纳,获得10
12秒前
矜天完成签到 ,获得积分10
14秒前
me发布了新的文献求助10
16秒前
Rondab完成签到,获得积分0
19秒前
杨柳依依完成签到,获得积分10
22秒前
等待完成签到 ,获得积分10
22秒前
热情的寄瑶完成签到 ,获得积分10
28秒前
艾艾发布了新的文献求助10
30秒前
语冰完成签到,获得积分10
32秒前
火星上映波完成签到,获得积分20
33秒前
35秒前
lby发布了新的文献求助30
37秒前
38秒前
在野应助火星上映波采纳,获得50
39秒前
语冰发布了新的文献求助10
40秒前
40秒前
Lucas应助Howeveran采纳,获得10
42秒前
44秒前
dsdsd发布了新的文献求助10
45秒前
豌豆发布了新的文献求助10
49秒前
53秒前
JamesPei应助吃彭彭的丁满采纳,获得10
59秒前
Kashing完成签到,获得积分10
59秒前
Howeveran完成签到,获得积分10
1分钟前
就知道发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1111完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
缥缈的书本完成签到,获得积分10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953411
求助须知:如何正确求助?哪些是违规求助? 3498890
关于积分的说明 11093209
捐赠科研通 3229405
什么是DOI,文献DOI怎么找? 1785362
邀请新用户注册赠送积分活动 869397
科研通“疑难数据库(出版商)”最低求助积分说明 801442