Suaeda salsa spectral index for Suaeda salsa mapping and fractional cover estimation in intertidal wetlands

萨尔萨 湿地 植被指数 植被(病理学) 环境科学 遥感 地理 归一化差异植被指数 生态学 叶面积指数 土壤科学 生物 格林威治 医学 病理
作者
Yinghai Ke,Yue Han,Liyue Cui,Peiyu Sun,Yukui Min,Zhanpeng Wang,Zhaojun Zhuo,Qingqing Zhou,Xiaolan Yin,Demin Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:207: 104-121 被引量:16
标识
DOI:10.1016/j.isprsjprs.2023.11.018
摘要

Suaeda Salsa (S. salsa), with short and red-purplish plants, is a typical pioneer saltmarsh species in the intertidal wetlands of temperate East Asia. It has important ecological, economic, and recreational values. In the past few decades, S. salsa has severely degraded in coastal China, which has brought widespread attention from regional and local governments. As a result, extensive S. salsa restoration projects have been initiated in recent years. It is urgently needed to develop satellite-based methods for both S. salsa mapping and fractional cover (FC) estimation because degradation and recovery of S. salsa are manifested by changes in both area and plant cover. However, accurate mapping and FC estimation of S. salsa are challenging because (1) S. salsa in intertidal areas have low FC and (2) heterogeneous soil backgrounds in wetlands greatly impact the spectral reflectance observed by satellites. To address these issues, this study proposed a new Suaeda Salsa Spectral Index (SSSI) to support accurate detection and FC estimation of S. salsa. The SSSI was designed based on the laboratory spectral measurements by considering variations in wetland soil moisture and by taking advantage of the reddish color of S. salsa. It consists of two components, one of which utilized blue, green and red bands to separate S. salsa from green vegetation, and the other component utilized a modification of the Soil Adjusted Vegetation Index (SAVI) to reduce the impact of soil background and maintain a linear relationship with S. salsa FC. SSSI was then applied on Sentinel-2/GF-1 images over the Yellow River Delta (YRD) and Liao River Delta (LRD), China. Based on SSSI, a simple thresholding approach was used to identify S. salsa, and a linear regression model was used to estimate FC. With reference datasets provided from field investigations, Unmanned Aerial Vehicle multispectral images and high-spatial resolution satellite images, our results show that the SSSI was able to detect low-coverage S. salsa (FC > 20 % in YRD and FC > 10 % in LRD), and the S. salsa maps had an overall accuracy over 94%. The SSSI-FC models achieved good estimation accuracies (R2 = 0.77 ∼ 0.86, RMSE = 7.55 % ∼ 9.79 %). Compared to the Normalized Difference Vegetation Index (NDVI) and SAVI, SSSI alleviated the impacts from soil backgrounds and provided better S. salsa FC estimations, particularly for low-coverage S. salsa. SSSI has great potential in supporting continuous monitoring of S. salsa dynamics and evaluating the effectiveness of S. salsa restoration projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
柠静樨发布了新的文献求助10
刚刚
Sarah完成签到,获得积分10
1秒前
su发布了新的文献求助10
3秒前
酷炫师完成签到,获得积分10
3秒前
3秒前
LW关闭了LW文献求助
4秒前
邵邵完成签到,获得积分10
5秒前
依依一一完成签到,获得积分20
5秒前
5秒前
真实的珠完成签到,获得积分10
5秒前
腼腆的雅绿完成签到,获得积分10
6秒前
李爱国应助米米采纳,获得10
6秒前
个性的南珍完成签到 ,获得积分10
6秒前
6秒前
7秒前
万能图书馆应助小狐狸采纳,获得10
7秒前
Lorain发布了新的文献求助10
7秒前
xzy998应助wyd222采纳,获得10
7秒前
科研小白发布了新的文献求助100
8秒前
8秒前
hanyue完成签到,获得积分10
8秒前
依依一一发布了新的文献求助10
9秒前
赘婿应助xin采纳,获得10
9秒前
9秒前
星河发布了新的文献求助10
10秒前
10秒前
Jasper应助成就的靖琪采纳,获得10
10秒前
无极微光应助笑点低怜阳采纳,获得20
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI6应助柠静樨采纳,获得10
11秒前
王珺完成签到,获得积分10
11秒前
11秒前
hanyue发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709704
求助须知:如何正确求助?哪些是违规求助? 5196042
关于积分的说明 15257869
捐赠科研通 4862344
什么是DOI,文献DOI怎么找? 2610072
邀请新用户注册赠送积分活动 1560428
关于科研通互助平台的介绍 1518131