Suaeda salsa spectral index for Suaeda salsa mapping and fractional cover estimation in intertidal wetlands

萨尔萨 湿地 植被指数 植被(病理学) 环境科学 遥感 地理 归一化差异植被指数 生态学 叶面积指数 土壤科学 生物 格林威治 医学 病理
作者
Yinghai Ke,Yue Han,Liyue Cui,Peiyu Sun,Yukui Min,Zhanpeng Wang,Zhaojun Zhuo,Qingqing Zhou,Xiaolan Yin,Demin Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:207: 104-121 被引量:16
标识
DOI:10.1016/j.isprsjprs.2023.11.018
摘要

Suaeda Salsa (S. salsa), with short and red-purplish plants, is a typical pioneer saltmarsh species in the intertidal wetlands of temperate East Asia. It has important ecological, economic, and recreational values. In the past few decades, S. salsa has severely degraded in coastal China, which has brought widespread attention from regional and local governments. As a result, extensive S. salsa restoration projects have been initiated in recent years. It is urgently needed to develop satellite-based methods for both S. salsa mapping and fractional cover (FC) estimation because degradation and recovery of S. salsa are manifested by changes in both area and plant cover. However, accurate mapping and FC estimation of S. salsa are challenging because (1) S. salsa in intertidal areas have low FC and (2) heterogeneous soil backgrounds in wetlands greatly impact the spectral reflectance observed by satellites. To address these issues, this study proposed a new Suaeda Salsa Spectral Index (SSSI) to support accurate detection and FC estimation of S. salsa. The SSSI was designed based on the laboratory spectral measurements by considering variations in wetland soil moisture and by taking advantage of the reddish color of S. salsa. It consists of two components, one of which utilized blue, green and red bands to separate S. salsa from green vegetation, and the other component utilized a modification of the Soil Adjusted Vegetation Index (SAVI) to reduce the impact of soil background and maintain a linear relationship with S. salsa FC. SSSI was then applied on Sentinel-2/GF-1 images over the Yellow River Delta (YRD) and Liao River Delta (LRD), China. Based on SSSI, a simple thresholding approach was used to identify S. salsa, and a linear regression model was used to estimate FC. With reference datasets provided from field investigations, Unmanned Aerial Vehicle multispectral images and high-spatial resolution satellite images, our results show that the SSSI was able to detect low-coverage S. salsa (FC > 20 % in YRD and FC > 10 % in LRD), and the S. salsa maps had an overall accuracy over 94%. The SSSI-FC models achieved good estimation accuracies (R2 = 0.77 ∼ 0.86, RMSE = 7.55 % ∼ 9.79 %). Compared to the Normalized Difference Vegetation Index (NDVI) and SAVI, SSSI alleviated the impacts from soil backgrounds and provided better S. salsa FC estimations, particularly for low-coverage S. salsa. SSSI has great potential in supporting continuous monitoring of S. salsa dynamics and evaluating the effectiveness of S. salsa restoration projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助amazeman111采纳,获得10
3秒前
3秒前
张沐泽完成签到,获得积分10
3秒前
ee完成签到,获得积分10
4秒前
Ava应助yyyyy语言采纳,获得10
5秒前
淡然千山完成签到 ,获得积分10
5秒前
芋泥啵啵发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
8秒前
陈敏娇完成签到,获得积分10
8秒前
晟至完成签到,获得积分10
8秒前
8秒前
8秒前
仄言发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
陈敏娇发布了新的文献求助10
11秒前
gh完成签到,获得积分10
12秒前
yaruyou发布了新的文献求助10
13秒前
1234发布了新的文献求助10
13秒前
乐乐应助科研菜狗采纳,获得10
14秒前
15秒前
16秒前
充电宝应助hinata采纳,获得10
16秒前
量子星尘发布了新的文献求助10
22秒前
cqsjy完成签到,获得积分10
23秒前
23秒前
认真柠檬完成签到,获得积分10
24秒前
25秒前
Owen应助蟑先生采纳,获得10
25秒前
Maestro_S应助内向的绿采纳,获得10
26秒前
ding应助头哥采纳,获得20
29秒前
科研通AI6.1应助苏yj采纳,获得10
29秒前
蟑先生完成签到 ,获得积分10
32秒前
32秒前
Hus11221完成签到,获得积分10
35秒前
丘比特应助Lignin采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601