计算机科学
分割
任务(项目管理)
人工智能
弹丸
图像(数学)
图像分割
计算机视觉
阅读(过程)
零(语言学)
机器学习
哲学
经济
有机化学
化学
管理
法学
语言学
政治学
作者
Alexander M. Kirillov,Eric Mintun,Nikhila Ravi,Hanzi Mao,Chloe Rolland,Laura Gustafson,Tete Xiao,Spencer Whitehead,Alexander C. Berg,Wan‐Yen Lo,Piotr Dollár,Ross Girshick
标识
DOI:10.1109/iccv51070.2023.00371
摘要
We introduce the Segment Anything (SA) project: a new task, model, and dataset for image segmentation. Using our efficient model in a data collection loop, we built the largest segmentation dataset to date (by far), with over 1 billion masks on 11M licensed and privacy respecting images. The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks. We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive – often competitive with or even superior to prior fully supervised results. We are releasing the Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and 11M images at segment-anything.com to foster research into foundation models for computer vision. We recommend reading the full paper at: arxiv.org/abs/2304.02643.
科研通智能强力驱动
Strongly Powered by AbleSci AI