已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Leveraging Unidentified Metabolic Features for Key Pathway Discovery: Chemical Classification-driven Network Analysis in Untargeted Metabolomics

化学 代谢组学 代谢网络 串联质谱法 计算生物学 苯丙素 代谢组 电喷雾电离 代谢物 代谢途径 质谱法 色谱法 生物化学 生物合成 新陈代谢 生物
作者
Xiuqiong Zhang,Zaifang Li,Chunxia Zhao,Tiantian Chen,Xinxin Wang,Xiaoshan Sun,Xinjie Zhao,Xin Lu,Guowang Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (8): 3409-3418 被引量:2
标识
DOI:10.1021/acs.analchem.3c04591
摘要

Untargeted metabolomics using liquid chromatography–electrospray ionization–high-resolution tandem mass spectrometry (UPLC–ESI–MS/MS) provides comprehensive insights into the dynamic changes of metabolites in biological systems. However, numerous unidentified metabolic features limit its utilization. In this study, a novel approach, the Chemical Classification-driven Molecular Network (CCMN), was proposed to unveil key metabolic pathways by leveraging hidden information within unidentified metabolic features. The method was demonstrated by using the herbivore-induced metabolic response in corn silk as a case study. Untargeted metabolomics analysis using UPLC–MS/MS was performed on wild corn silk and two genetically modified lines (pre- and postinsect treatment). Global annotation initially identified 256 (ESI–) and 327 (ESI+) metabolites. MS/MS-based classifications predicted 1939 (ESI–) and 1985 (ESI+) metabolic features into the chemical classes. CCMNs were then constructed using metabolic features shared classes, which facilitated the structure- or class annotation for completely unknown metabolic features. Next, 844/713 significantly decreased and 1593/1378 increased metabolites in ESI–/ESI+ modes were defined in response to insect herbivory, respectively. Method validation on a spiked maize sample demonstrated an overall class prediction accuracy rate of 95.7%. Potential key pathways were prescreened by a hypergeometric test using both structure- and class-annotated differential metabolites. Subsequently, CCMN was used to deeply amend and uncover the pathway metabolites deeply. Finally, 8 key pathways were defined, including phenylpropanoid (C6–C3), flavonoid, octadecanoid, diterpenoid, lignan, steroid, amino acid/small peptide, and monoterpenoid. This study highlights the effectiveness of leveraging unidentified metabolic features. CCMN-based key pathway analysis reduced the bias in conventional pathway enrichment analysis. It provides valuable insights into complex biological processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熠熠完成签到,获得积分10
1秒前
核桃应助优雅的雪一采纳,获得10
1秒前
1秒前
英姑应助任晴采纳,获得10
1秒前
科研通AI5应助晓雨采纳,获得10
1秒前
我是老大应助无奈柚子采纳,获得10
3秒前
罗哈哈发布了新的文献求助10
4秒前
6秒前
怪胎完成签到,获得积分10
7秒前
烟雾发布了新的文献求助10
8秒前
JACk发布了新的文献求助10
10秒前
科研通AI2S应助半糖神仙采纳,获得10
10秒前
光亮语梦完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
勤奋流沙完成签到 ,获得积分10
12秒前
科研通AI5应助garyaa采纳,获得10
13秒前
核桃应助优雅的雪一采纳,获得10
13秒前
随遇而安应助科研通管家采纳,获得20
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得50
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
15秒前
Douest发布了新的文献求助30
16秒前
无奈柚子发布了新的文献求助10
16秒前
烂漫的唯雪完成签到,获得积分10
16秒前
Xiaoming85发布了新的文献求助10
18秒前
19秒前
丘比特应助虚幻冷松采纳,获得10
21秒前
大个应助巴啦啦采纳,获得10
25秒前
鸣风发布了新的文献求助10
26秒前
27秒前
32秒前
晓雨发布了新的文献求助10
32秒前
bachelor完成签到,获得积分10
35秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3720891
求助须知:如何正确求助?哪些是违规求助? 3266900
关于积分的说明 9946472
捐赠科研通 2980628
什么是DOI,文献DOI怎么找? 1634972
邀请新用户注册赠送积分活动 776198
科研通“疑难数据库(出版商)”最低求助积分说明 746158