Regional Comparison of Performance between EnKF and EnOI in the North Pacific

太平洋 环境科学 气候学 地质学 海洋学
作者
Seung Tae Lee,Yang‐Ki Cho,Jihun Jung,Byoung‐Ju Choi,Young Ho Kim,Sangil Kim
出处
期刊:Journal of Atmospheric and Oceanic Technology [American Meteorological Society]
卷期号:41 (2): 113-125
标识
DOI:10.1175/jtech-d-23-0062.1
摘要

Abstract The North Pacific is divided into different regions based on ocean currents and sea surface temperature (SST) distribution. Data assimilation is a useful tool for generating accurate ocean estimates because of the limited availability of observational data. This study compared the performances of two data assimilation methods, ensemble optimal interpolation (EnOI) and ensemble Kalman filter (EnKF), in various North Pacific subregions using an ocean model configured with the Regional Ocean Modeling System (ROMS). Both methods assimilated spaceborne SST observations, and the simulation results varied by subregion. The study found that EnKF and EnOI methods performed better than the control model in all regions when compared against satellite SST. EnOI reproduced SST as well as EnKF and required fewer computational resources. However, EnOI performed worse than the control model at sea surface height (SSH) in the equatorial region, while EnKF’s performance improved. This was due to the crushed mean state in the EnOI, which used long-term historical data as an ensemble member. El Niño–Southern Oscillation at the equator drove substantial interannual variability that crushed the ensemble mean of SSH in the EnOI. It is crucial to use a suitable assimilation method for the target area, considering the regional properties of ocean variables. Otherwise, the performance of the assimilated model may be even worse than that of the control model. While EnKF is better suited for regions with high variability in ocean variables, EnOI requires fewer computational resources. Thus, it is crucial to use a suitable assimilation method for accurately predicting and understanding the dynamics of the North Pacific.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽佩奇发布了新的文献求助10
刚刚
莹Y完成签到,获得积分10
1秒前
2秒前
2秒前
爱静静应助c182484455采纳,获得10
3秒前
3秒前
4秒前
hyy发布了新的文献求助10
4秒前
36038138发布了新的文献求助30
5秒前
5秒前
5秒前
李爱国应助mustardseeds采纳,获得10
6秒前
hong完成签到,获得积分10
6秒前
在水一方应助老迟的新瑶采纳,获得10
7秒前
刘欢发布了新的文献求助10
7秒前
脑洞疼应助有魅力听枫采纳,获得10
7秒前
LLLYYY完成签到,获得积分10
8秒前
8秒前
Singularity应助哐哐哐铛采纳,获得10
8秒前
9秒前
BK发布了新的文献求助10
11秒前
NCS完成签到 ,获得积分10
14秒前
溫蒂发布了新的文献求助30
14秒前
linxw发布了新的文献求助10
15秒前
伶俐绿海完成签到 ,获得积分10
16秒前
decade完成签到,获得积分10
17秒前
17秒前
大个应助WXY采纳,获得10
17秒前
c182484455完成签到,获得积分10
19秒前
正直冰露完成签到,获得积分10
19秒前
19秒前
20秒前
很傻的狗完成签到,获得积分10
20秒前
20秒前
20秒前
抹茶泡泡完成签到 ,获得积分10
21秒前
lbx完成签到,获得积分10
22秒前
eerrttyyuu发布了新的文献求助10
23秒前
yyt发布了新的文献求助10
23秒前
SciGPT应助BK采纳,获得10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260