Investigating the Performance of CMIP6 Seasonal Precipitation Predictions and a Grid Based Model Heterogeneity Oriented Deep Learning Bias Correction Framework

降水 气候模式 环境科学 计算机科学 气候学 分位数 网格 气候变化 计量经济学 气象学 数学 地质学 地理 几何学 海洋学
作者
Bohan Huang,Zhu Liu,Su Liu,Qingyun Duan
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (23)
标识
DOI:10.1029/2023jd039046
摘要

Abstract Climate change is expected to alter the magnitude and spatiotemporal patterns of hydro‐climate variables such as precipitation, which has significant impacts on the ecosystem, human societies and water security. Global Climate Models are the major tools to simulate historical as well as future precipitation. However, due to imperfect model structures, parameters and boundary conditions, direct model outputs are subject to large uncertainty, which needs serious evaluation and bias correction before usage. In this study, seasonal precipitation predictions from 30 Coupled Model Inter‐comparison Project Phase 6 (CMIP6) models and Climate Research Unit observations are used to evaluate historical precipitation climatology in global continents during 1901–2014. A grid based model heterogeneity oriented Convolutional Neural Network (CNN) is proposed to correct the ensemble mean precipitation bias ratio. Besides, regression based Linear Scaling (LS), distribution based Quantile Mapping (QM) and spatial correlation CNN bias correction approaches are employed for comparison. Results of model performance evaluation indicate that generally precipitation prediction is more reliable in JJA than DJF on the global scale. Most models tend to have larger bias ratio for extreme precipitation. In addition, current CMIP6 models still have certain issues in accurate simulation of precipitation in mountainous regions and the regions affected by complex climate systems. Moreover, the proposed grid based model heterogeneity oriented CNN has better performance in ensemble mean bias correction than LS, QM, and spatial correlation CNN, which could consider the relative model performance and capture the features similar to actual climate dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
da发布了新的文献求助10
刚刚
乔乔完成签到,获得积分10
刚刚
Liufgui应助leicaixia采纳,获得30
1秒前
JamesPei应助jjhh采纳,获得10
1秒前
WYB发布了新的文献求助10
1秒前
1秒前
2秒前
将1发布了新的文献求助10
3秒前
英俊绝义发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
ForZero完成签到,获得积分10
6秒前
6秒前
思维隋发布了新的文献求助10
6秒前
6秒前
零露完成签到,获得积分10
6秒前
彭于彦祖应助小巧的问旋采纳,获得30
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
张雯思发布了新的文献求助10
8秒前
9秒前
9秒前
木木应助橘枳采纳,获得10
9秒前
DianaRang发布了新的文献求助10
10秒前
ccq发布了新的文献求助10
10秒前
10秒前
11秒前
李健的小迷弟应助da1234采纳,获得10
11秒前
张雯思发布了新的文献求助10
11秒前
优雅狗给优雅狗的求助进行了留言
11秒前
马季完成签到,获得积分10
11秒前
12秒前
张雯思发布了新的文献求助10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
YamDaamCaa应助科研通管家采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126