亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lattice Boltzmann Study of Microdroplet Evaporation Process in Pixel Pits

有机发光二极管 蒸发 材料科学 格子Boltzmann方法 接触角 无定形固体 半径 热的 过程(计算) 像素 复合材料 光电子学 光学 机械 化学 热力学 结晶学 物理 图层(电子) 操作系统 计算机科学 计算机安全
作者
Wenxiang Wu,Jiankui Chen,Wei Chen,Zhouping Yin
出处
期刊:Langmuir [American Chemical Society]
卷期号:39 (21): 7268-7280 被引量:7
标识
DOI:10.1021/acs.langmuir.3c00117
摘要

Inkjet printing has the advantages of high material utilization, low cost, and large-area production and is a promising manufacturing technology for organic light-emitting diode (OLED) displays. However, the droplet evaporation in micron-size pixel pits is highly influenced by the pit wall. Such a process is extremely difficult to control, leading to the appearance of defects such as the coffee ring in the printing process of OLED displays. In this work, a multiphase thermal lattice Boltzmann (LB) model based on multiple distribution functions is established to study the evaporation process of micron-size droplets in pits. According to the characteristics of the largest number of the three-phase contact line (TCL) appearing in the evaporation process, the evaporation modes can be divided into three types, i.e., one, two, and three TCLs. In the 1-TCL mode, the droplet stays in constant contact radius (CCR) for the shortest time; in 2-TCL and 3-TCL modes, the liquid film fracture behavior of evaporating droplets in the pit is well captured. The effects of the pit height and the contact angle on the droplet evaporation mode are investigated in detail. The phase diagrams of evaporation modes with different parameters are also established. The revealed evaporation mechanism is supposed to be useful for regulating the droplet evaporation behavior and controlling the cured film shape in the OLED printing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助读书的时候采纳,获得10
10秒前
科研通AI2S应助给好评采纳,获得10
16秒前
大模型应助Nichols采纳,获得10
17秒前
23秒前
给好评发布了新的文献求助10
28秒前
顾矜应助读书的时候采纳,获得10
41秒前
42秒前
43秒前
49秒前
我爱学习完成签到,获得积分10
53秒前
54秒前
小璐完成签到,获得积分20
55秒前
我爱学习发布了新的文献求助10
1分钟前
Linda发布了新的文献求助10
1分钟前
1分钟前
kangwen发布了新的文献求助10
1分钟前
1分钟前
顾矜应助一见喜采纳,获得10
1分钟前
Linda完成签到,获得积分10
1分钟前
1分钟前
科研通AI6.1应助lemon采纳,获得10
1分钟前
1分钟前
一见喜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
风吹麦田应助kangwen采纳,获得30
2分钟前
2分钟前
Lan完成签到 ,获得积分10
2分钟前
lemon完成签到,获得积分10
2分钟前
在水一方应助小璐采纳,获得10
2分钟前
lemon发布了新的文献求助10
2分钟前
充电宝应助伊祁夜明采纳,获得10
2分钟前
2分钟前
西早完成签到 ,获得积分10
2分钟前
Nichols发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
漂亮幻莲完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731973
求助须知:如何正确求助?哪些是违规求助? 5335177
关于积分的说明 15321878
捐赠科研通 4877749
什么是DOI,文献DOI怎么找? 2620617
邀请新用户注册赠送积分活动 1569892
关于科研通互助平台的介绍 1526410