High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte

阳极 材料科学 电池(电) 电解质 有机自由基电池 电化学 储能 钠离子电池 化学工程 纳米技术 电极 化学 法拉第效率 物理化学 功率(物理) 工程类 物理 量子力学
作者
Hongzheng Wu,Zhaochun Ye,Jinlian Zhu,Shenghao Luo,Li Li,Wenhui Yuan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (44): 49774-49784 被引量:18
标识
DOI:10.1021/acsami.2c14206
摘要

Sodium-based dual-ion batteries have shown great promise for large-scale energy storage applications due to their wide operating voltages, environmental friendliness, abundant sodium resources, and low cost, which are widely investigated by researchers. However, the development of high-performance anode materials is a key requirement for the realization of such electrochemical energy storage systems at the practical application level. Carbonaceous anode materials based on intercalation/deintercalation mechanisms typically exhibit low discharge capacities, while metal-based materials based on conversion or alloying reactions show unsatisfactory stability in performance. On the contrary, organic materials display high theoretical capacities due to their flexible molecular structure designability and stable cyclic performance with fast reaction kinetics based on the unique enolization reaction. Herein, we report an organic polymer anode material of polyimide (PNTO), combined with a high-concentration electrolyte; the sodium-based dual-ion battery system constructed exhibits outstanding electrochemical performance. The full battery shows an ultra-high specific discharge capacity of 293.2 mAh g–1 and can be cycled stably for 3200/5600/4100 cycles at ultra-high rates of 60/120/150 C without degradation. Furthermore, the dual-ion battery system demonstrates an extremely low self-discharge rate of 0.03% h–1 and superior fast-charging–slow-discharging performance. It is one of the best performances reported up to now for a dual-ion full battery based on an organic polymer anode. This novel battery system design strategy will facilitate the advancement of high-performance organic-based dual-ion batteries and is expected to be a promising candidate for large-scale energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助忧虑的真采纳,获得10
1秒前
4秒前
呐呐呐发布了新的文献求助10
6秒前
意忆完成签到,获得积分10
7秒前
7秒前
自信的坤完成签到,获得积分10
8秒前
叁丘山完成签到,获得积分10
8秒前
1234556发布了新的文献求助10
10秒前
NexusExplorer应助ww采纳,获得10
10秒前
打打应助tt采纳,获得10
11秒前
11秒前
Jenniejane发布了新的文献求助20
12秒前
SWAGGER123发布了新的文献求助10
13秒前
骆十八完成签到,获得积分10
14秒前
14秒前
姜灭绝发布了新的文献求助10
15秒前
19秒前
20秒前
mouse0821发布了新的文献求助10
21秒前
夏侯德东完成签到,获得积分10
21秒前
22秒前
1234556完成签到,获得积分10
23秒前
24秒前
fwi小白发布了新的文献求助10
26秒前
youy完成签到 ,获得积分10
26秒前
科研小白完成签到,获得积分10
26秒前
CipherSage应助彩色的紫南采纳,获得10
27秒前
量子星尘发布了新的文献求助10
30秒前
奋进的熊发布了新的文献求助10
31秒前
32秒前
科研通AI5应助我叫周杰伦采纳,获得10
32秒前
CodeCraft应助陈晓真采纳,获得10
34秒前
量子星尘发布了新的文献求助10
36秒前
奋进的熊完成签到,获得积分10
38秒前
38秒前
38秒前
39秒前
39秒前
Wu完成签到,获得积分10
42秒前
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012