A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 地质学 地震学 图像(数学) 语言学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
愤怒的苗条完成签到 ,获得积分10
2秒前
2秒前
单薄的钢笔完成签到,获得积分10
3秒前
温暖的颜演完成签到 ,获得积分10
3秒前
芑璇完成签到,获得积分10
4秒前
好孩子不吃瓜完成签到,获得积分20
4秒前
TL完成签到 ,获得积分10
5秒前
6秒前
7秒前
文人青完成签到,获得积分10
8秒前
Sunny完成签到 ,获得积分10
8秒前
chanyelo完成签到,获得积分10
9秒前
lucas发布了新的文献求助10
10秒前
迷路的翠容完成签到,获得积分10
10秒前
Duomo应助谨慎的易蓉采纳,获得10
10秒前
远航完成签到,获得积分10
12秒前
文献高手完成签到 ,获得积分10
12秒前
Maestro_S应助科研通管家采纳,获得10
14秒前
gengen应助科研通管家采纳,获得10
14秒前
BareBear应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
BareBear应助科研通管家采纳,获得10
14秒前
Maestro_S应助科研通管家采纳,获得10
14秒前
gengen应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
Maestro_S应助科研通管家采纳,获得10
15秒前
BareBear应助科研通管家采纳,获得10
15秒前
gengen应助科研通管家采纳,获得10
15秒前
BareBear应助科研通管家采纳,获得10
15秒前
smottom应助科研通管家采纳,获得10
15秒前
Maestro_S应助科研通管家采纳,获得10
15秒前
BareBear应助科研通管家采纳,获得10
15秒前
15秒前
BareBear应助科研通管家采纳,获得10
15秒前
小杭76应助科研通管家采纳,获得10
15秒前
Maestro_S应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603500
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854100
捐赠科研通 4693213
什么是DOI,文献DOI怎么找? 2540784
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806