A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 语言学 地震学 图像(数学) 地质学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BowieHuang应助尔尔采纳,获得10
刚刚
初雪应助木沐采纳,获得10
1秒前
Lucas应助skycool采纳,获得20
1秒前
mengguzai完成签到,获得积分20
2秒前
KULI完成签到,获得积分20
2秒前
搜集达人应助湛荏染采纳,获得10
2秒前
pufanlg发布了新的文献求助10
3秒前
涵青夏完成签到 ,获得积分10
4秒前
ilihe举报瑶瑶奶昔求助涉嫌违规
4秒前
4秒前
4秒前
4秒前
归一然发布了新的文献求助30
4秒前
仙林AK47完成签到,获得积分10
5秒前
5秒前
机智的早晨完成签到,获得积分10
5秒前
滕擎发布了新的文献求助10
5秒前
大师现在发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
meostay发布了新的文献求助10
5秒前
Zu关注了科研通微信公众号
5秒前
8秒前
zengtx1完成签到,获得积分10
8秒前
Dreamhappy完成签到,获得积分10
8秒前
zsy19完成签到,获得积分10
8秒前
wanci应助LUODAD采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
大模型应助诚心的醉卉采纳,获得10
10秒前
执着的冬瓜完成签到 ,获得积分10
11秒前
11秒前
鑫xin发布了新的文献求助10
11秒前
nemo711完成签到,获得积分10
11秒前
BowieHuang应助无语的夜春采纳,获得10
12秒前
小马甲应助无语的夜春采纳,获得10
12秒前
12秒前
zsy19发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774251
求助须知:如何正确求助?哪些是违规求助? 5616574
关于积分的说明 15435095
捐赠科研通 4906776
什么是DOI,文献DOI怎么找? 2640385
邀请新用户注册赠送积分活动 1588179
关于科研通互助平台的介绍 1543225