A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 地质学 地震学 图像(数学) 语言学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我有魔鬼大头应助tigger采纳,获得40
刚刚
刚刚
科研通AI6应助云梦江海采纳,获得10
刚刚
1秒前
adheret完成签到,获得积分10
1秒前
1秒前
1秒前
英俊的铭应助奥特曼采纳,获得10
1秒前
烟花应助司空碧萱采纳,获得10
2秒前
2秒前
李健的粉丝团团长应助zz采纳,获得10
2秒前
2秒前
3秒前
斯文静竹完成签到,获得积分10
4秒前
4秒前
yy完成签到,获得积分10
4秒前
heute发布了新的文献求助10
4秒前
正直的博发布了新的文献求助10
4秒前
李盛男完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
ccc完成签到,获得积分10
6秒前
热心的诗蕊完成签到,获得积分10
6秒前
zcq发布了新的文献求助10
6秒前
yy发布了新的文献求助10
7秒前
喻问晴发布了新的文献求助10
7秒前
既然寄了,那就开摆完成签到 ,获得积分10
7秒前
7秒前
豆子发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
Ava应助哦啊啊采纳,获得10
9秒前
李健的小迷弟应助Tatw采纳,获得10
9秒前
JamesPei应助小兔子乖乖采纳,获得10
9秒前
明理的盼山完成签到,获得积分10
10秒前
10秒前
科研通AI6应助鱼鱼鱼采纳,获得10
11秒前
li完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679