A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 语言学 地震学 图像(数学) 地质学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卓卓发布了新的文献求助10
1秒前
简单大西瓜完成签到,获得积分10
1秒前
慕青应助balko采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
xmjy完成签到,获得积分20
3秒前
charint应助陈圈圈采纳,获得10
4秒前
科研通AI6应助Lynn2022采纳,获得10
5秒前
5秒前
6秒前
7秒前
7秒前
xmjy发布了新的文献求助10
8秒前
超级的鞅完成签到,获得积分10
8秒前
明亮西牛发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
andrele发布了新的文献求助10
13秒前
咖啡续命发布了新的文献求助10
13秒前
14秒前
英俊的铭应助咩咩采纳,获得10
15秒前
浪客剑心发布了新的文献求助10
15秒前
kk发布了新的文献求助10
16秒前
丘比特应助小言采纳,获得10
16秒前
栀染发布了新的文献求助20
16秒前
个性小海豚完成签到,获得积分10
17秒前
17秒前
ding应助淡淡夕阳采纳,获得10
18秒前
SciGPT应助Hope采纳,获得10
18秒前
19秒前
wuwu发布了新的文献求助10
20秒前
义气千风完成签到,获得积分10
21秒前
jieni发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792