A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 地质学 地震学 图像(数学) 语言学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈圈发布了新的文献求助10
刚刚
刚刚
刚刚
Pzj完成签到,获得积分10
刚刚
NexusExplorer应助PHDpeng采纳,获得10
1秒前
3秒前
朴实觅波完成签到,获得积分10
5秒前
侯长秀完成签到 ,获得积分10
5秒前
无期完成签到,获得积分10
5秒前
7秒前
lilili应助一昂采纳,获得10
7秒前
7秒前
元宵完成签到 ,获得积分10
7秒前
糟糕的学姐完成签到 ,获得积分10
9秒前
田様应助星空采纳,获得10
10秒前
平方发布了新的文献求助10
10秒前
隐形曼青应助壮观溪流采纳,获得10
11秒前
汉堡包应助蛙蛙采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
lokiyyy发布了新的文献求助10
12秒前
a超完成签到 ,获得积分10
13秒前
13秒前
龙jianyan发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
wssf756完成签到,获得积分10
17秒前
舒适笑容完成签到,获得积分10
17秒前
科研韭菜发布了新的文献求助10
18秒前
18秒前
酷波er应助哈哈采纳,获得10
18秒前
核动力驴应助大可不必采纳,获得10
19秒前
20秒前
姚美阁完成签到 ,获得积分10
20秒前
21秒前
Cxxxx发布了新的文献求助10
21秒前
时光中的微粒完成签到 ,获得积分10
21秒前
21秒前
AX完成签到,获得积分10
21秒前
领导范儿应助蝶步韶华采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690