A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 语言学 地震学 图像(数学) 地质学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情的友卉完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
故酒发布了新的文献求助100
1秒前
2秒前
远山完成签到,获得积分10
2秒前
2秒前
2秒前
牛马小刘完成签到 ,获得积分10
2秒前
FashionBoy应助饵丝拌辣酱采纳,获得10
2秒前
Orange应助11di采纳,获得10
3秒前
善学以致用应助光亮妙之采纳,获得10
3秒前
3秒前
橘子汽水完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
17完成签到,获得积分10
5秒前
5秒前
刘杭完成签到,获得积分10
5秒前
5秒前
开心的夏蓉完成签到,获得积分10
5秒前
6秒前
Ava应助忐忑的以旋采纳,获得10
6秒前
潘若溪发布了新的文献求助10
6秒前
7秒前
123发布了新的文献求助10
7秒前
飘拂草完成签到,获得积分10
7秒前
17发布了新的文献求助10
7秒前
7秒前
儒雅猕猴桃完成签到,获得积分10
7秒前
顾文发布了新的文献求助10
7秒前
7秒前
7秒前
myth发布了新的文献求助10
9秒前
9秒前
9秒前
星星完成签到,获得积分10
9秒前
LiuJG发布了新的文献求助10
9秒前
IVY1300完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707949
求助须知:如何正确求助?哪些是违规求助? 5186552
关于积分的说明 15252222
捐赠科研通 4861091
什么是DOI,文献DOI怎么找? 2609200
邀请新用户注册赠送积分活动 1559900
关于科研通互助平台的介绍 1517670