A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 地质学 地震学 图像(数学) 语言学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vkl完成签到 ,获得积分10
刚刚
刚刚
zzzz关注了科研通微信公众号
1秒前
HEIKU应助dqq采纳,获得10
2秒前
陶醉凌晴关注了科研通微信公众号
3秒前
Ava应助奋斗天德采纳,获得10
3秒前
junru发布了新的文献求助10
4秒前
6秒前
lilx关注了科研通微信公众号
8秒前
8R60d8应助IAMXC采纳,获得80
8秒前
科研通AI2S应助tuotuo采纳,获得200
9秒前
9秒前
宝字盖发布了新的文献求助10
11秒前
7777发布了新的文献求助10
13秒前
15秒前
科研通AI2S应助狂炫AD钙奶采纳,获得10
15秒前
张天宝真的爱科研完成签到,获得积分10
19秒前
7777完成签到,获得积分20
22秒前
影子完成签到 ,获得积分10
22秒前
有人应助lulu采纳,获得30
27秒前
有人应助阿尼亚采纳,获得10
29秒前
榆木先生完成签到 ,获得积分10
31秒前
32秒前
32秒前
ZLY完成签到,获得积分10
33秒前
勤恳的断秋完成签到 ,获得积分10
35秒前
jovrtic发布了新的文献求助10
36秒前
lvlvlvsh发布了新的文献求助10
37秒前
开朗雪卉发布了新的文献求助10
38秒前
xy完成签到,获得积分10
39秒前
天天快乐应助aka2012采纳,获得10
42秒前
CipherSage应助浅泽采纳,获得10
43秒前
黑黑黑完成签到,获得积分10
44秒前
ZLY关闭了ZLY文献求助
45秒前
cccool完成签到,获得积分10
47秒前
慕青应助zzzz采纳,获得10
47秒前
jovrtic完成签到,获得积分10
48秒前
Patrick完成签到,获得积分10
48秒前
李爱国应助eden采纳,获得10
50秒前
Remorn完成签到,获得积分10
50秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2791011
关于积分的说明 7797468
捐赠科研通 2447398
什么是DOI,文献DOI怎么找? 1301879
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194