A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 地质学 地震学 图像(数学) 语言学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bastien发布了新的文献求助10
1秒前
云飞发布了新的文献求助10
3秒前
Li发布了新的文献求助10
3秒前
三土完成签到 ,获得积分10
3秒前
强健的迎波完成签到,获得积分10
4秒前
万能图书馆应助李龙采纳,获得10
4秒前
4秒前
Stamina678完成签到,获得积分10
7秒前
iamzhangly30hyit完成签到 ,获得积分10
8秒前
郝富发布了新的文献求助30
8秒前
8秒前
等待毛豆发布了新的文献求助10
9秒前
大模型应助chemj采纳,获得10
9秒前
西门发发发布了新的文献求助30
9秒前
11秒前
Apei完成签到,获得积分10
11秒前
bastien完成签到,获得积分10
11秒前
涂涂关注了科研通微信公众号
12秒前
12秒前
6666发布了新的文献求助10
13秒前
LBH发布了新的文献求助10
15秒前
16秒前
16秒前
李子敬发布了新的文献求助10
17秒前
汉堡包应助云飞采纳,获得10
18秒前
18秒前
Lucas应助小东西725采纳,获得10
19秒前
nana发布了新的文献求助10
19秒前
慕青应助火柴人采纳,获得10
19秒前
19秒前
郝富完成签到,获得积分0
20秒前
星辰大海应助等待毛豆采纳,获得10
21秒前
天天快乐应助李龙采纳,获得10
21秒前
Deer发布了新的文献求助10
21秒前
Boo完成签到,获得积分10
22秒前
wh发布了新的文献求助10
23秒前
泥嚎小周发布了新的文献求助10
23秒前
23秒前
FashionBoy应助祈求夏天采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533647
求助须知:如何正确求助?哪些是违规求助? 4621892
关于积分的说明 14580776
捐赠科研通 4562017
什么是DOI,文献DOI怎么找? 2499831
邀请新用户注册赠送积分活动 1479505
关于科研通互助平台的介绍 1450600