A lightweight model for train bearing fault diagnosis based on multiscale attentional feature fusion

计算机科学 噪音(视频) 卷积神经网络 特征(语言学) 断层(地质) 人工智能 方位(导航) 残余物 对比度(视觉) 模式识别(心理学) 人工神经网络 算法 哲学 语言学 地震学 图像(数学) 地质学
作者
Changfu He,Deqiang He,Zhenpeng Lao,Zexian Wei,Zaiyu Xiang,Weibin Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025113-025113 被引量:5
标识
DOI:10.1088/1361-6501/aca170
摘要

Abstract As one of the key components of a train, the running gear bearing has the highest fault rate, and its health condition is very important for the safe operation of the train. Therefore, how to quickly and accurately diagnose the health condition of the train running gear bearings under strong noise and variable working conditions has become one of the core contents of the intelligent operation and maintenance strategy. To meet these requirements, a lightweight convolutional neural network based on multiscale attentional feature fusion (MA-LCNN) is proposed in this paper, which takes the inverted residual network as the main structure. Firstly, a multiscale attention module (MA) was designed to extract fault feature information. Secondly, by embedding MAs in different locations, the ability of the MA-LCNN to extract fault feature information is greatly improved. Finally, an ablation experiment and noise resistance experiment are performed. The recognition accuracy scores of the MA-LCNN for cases 2 and 3 are 99.70% and 99.83%, respectively. The results show that the proposed attention module has better learning ability and stability compared to the contrast modules. The MA-LCNN demonstrates better fault diagnosis performance than contrast models under different noise environments and variable working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳炎发布了新的文献求助10
刚刚
卢西奥发布了新的文献求助10
1秒前
王缪芸完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
充电宝应助wangwang采纳,获得10
1秒前
1秒前
1秒前
zxw发布了新的文献求助10
2秒前
2秒前
Hello应助坚定的傲易采纳,获得10
2秒前
2秒前
nini发布了新的文献求助10
3秒前
Zxp发布了新的文献求助10
3秒前
HXY完成签到 ,获得积分10
3秒前
Valley发布了新的文献求助10
3秒前
3秒前
orixero应助曾经的贞采纳,获得10
4秒前
4秒前
4秒前
花怜发布了新的文献求助10
4秒前
Lenacici完成签到,获得积分10
4秒前
赵西里完成签到,获得积分10
4秒前
4秒前
孙璧宬发布了新的文献求助10
4秒前
xuan发布了新的文献求助10
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得30
5秒前
JamesPei应助科研通管家采纳,获得30
5秒前
情怀应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
高大宛完成签到,获得积分10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274