Nonparametric Classification Method for Multiple-Choice Items in Cognitive Diagnosis

非参数统计 计算机科学 参数统计 钥匙(锁) 样品(材料) 机器学习 认知 对比度(视觉) 人工智能 人气 数据挖掘 统计 心理学 数学 计算机安全 色谱法 社会心理学 神经科学 化学
作者
Yu Wang,Chia‐Yi Chiu,Hans Friedrich Köhn
出处
期刊:Journal of Educational and Behavioral Statistics [SAGE Publishing]
卷期号:48 (2): 189-219 被引量:7
标识
DOI:10.3102/10769986221133088
摘要

The multiple-choice (MC) item format has been widely used in educational assessments across diverse content domains. MC items purportedly allow for collecting richer diagnostic information. The effectiveness and economy of administering MC items may have further contributed to their popularity not just in educational assessment. The MC item format has also been adapted to the cognitive diagnosis (CD) framework. Early approaches simply dichotomized the responses and analyzed them with a CD model for binary responses. Obviously, this strategy cannot exploit the additional diagnostic information provided by MC items. De la Torre’s MC Deterministic Inputs, Noisy “And” Gate (MC-DINA) model was the first for the explicit analysis of items having MC response format. However, as a drawback, the attribute vectors of the distractors are restricted to be nested within the key and each other. The method presented in this article for the CD of DINA items having MC response format does not require such constraints. Another contribution of the proposed method concerns its implementation using a nonparametric classification algorithm, which predestines it for use especially in small-sample settings like classrooms, where CD is most needed for monitoring instruction and student learning. In contrast, default parametric CD estimation routines that rely on EM- or MCMC-based algorithms cannot guarantee stable and reliable estimates—despite their effectiveness and efficiency when samples are large—due to computational feasibility issues caused by insufficient sample sizes. Results of simulation studies and a real-world application are also reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
swing发布了新的文献求助10
1秒前
彭仲康发布了新的文献求助30
1秒前
1秒前
4秒前
afatinib完成签到,获得积分10
7秒前
吖吖完成签到,获得积分20
8秒前
8秒前
8秒前
cwm完成签到,获得积分10
10秒前
10秒前
Andy完成签到,获得积分10
10秒前
swing完成签到,获得积分20
12秒前
12秒前
14秒前
谷谷发布了新的文献求助10
14秒前
16秒前
赣南橙发布了新的文献求助30
16秒前
小蘑菇应助永远采纳,获得10
17秒前
骜111完成签到,获得积分10
18秒前
搜集达人应助演化的蛙鱼采纳,获得10
19秒前
在水一方应助yangyang采纳,获得10
20秒前
忘崽子小拳头完成签到,获得积分10
20秒前
21秒前
隐形曼青应助Russula_Chu采纳,获得30
21秒前
小a发布了新的文献求助10
21秒前
fhw完成签到 ,获得积分10
21秒前
传奇3应助刻苦鼠标采纳,获得20
22秒前
代代完成签到,获得积分10
24秒前
科研通AI5应助赣南橙采纳,获得30
26秒前
棠真完成签到 ,获得积分10
27秒前
姬鲁宁完成签到 ,获得积分10
31秒前
冰汤圆发布了新的文献求助20
31秒前
柚子蟹关注了科研通微信公众号
31秒前
脑洞疼应助lilac采纳,获得30
32秒前
大个应助小a采纳,获得10
32秒前
BowenShi完成签到 ,获得积分10
33秒前
情怀应助香蕉如音采纳,获得30
35秒前
彭仲康完成签到,获得积分10
36秒前
Mrmiss666完成签到,获得积分10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901