Wheat phenology detection with the methodology of classification based on the time-series UAV images

物候学 特征选择 人工智能 遥感 播种 开花 分类器(UML) 模式识别(心理学) 数学 计算机科学 农学 生物 地理 栽培
作者
Meng Zhou,Hengbiao Zheng,Can He,Peng Liu,G.Mustafa Awan,Xue Wang,Tao Cheng,Yan Zhu,Weixing Cao,Xia Yao
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:292: 108798-108798 被引量:22
标识
DOI:10.1016/j.fcr.2022.108798
摘要

Near real-time crop phenology information can offer significant guidance for the implementation of crop management. Previous approaches to crop phenology detection have relied on time-series vegetation index curves, which can only be formed after the end of the whole phenology. To overcome the lag problem in phenology estimation, this study treats phenology detection as a classification problem based on imaging from an Unmanned Aerial Vehicle (UAV). Wheat field trials over two experimental seasons involved different sowing dates, nitrogen (N) rates, and wheat cultivars. A feature selection algorithm based on the compactness-separation principle (FS-CS) was used to filter the spectral and texture features extracted from time-series UAV images. The multi-level correlation vector machine (mRVM) was used to classify the principal phenological stages, including emergence, tillering, jointing, booting, and heading anthesis, filling, and maturity stages. The results showed that the classification accuracies of each stage were 0.86, 0.87, 0.31, 0.61, 0.22, 0.25, 0.77 and 0.93, respectively. Furthermore, the combination of spectral features and texture features has been proven to compensate for each other’s deficiencies, and the overall accuracy obtained using two features together increased by 27 % and 13 %, respectively. Finally, the efficiency of the feature selection algorithm and classifier used in this study were discussed. The best estimation results were generated using FS-CS and mRVM when the optimal number of features was small. This research provides theoretical support for instantaneous detection of crop phenology based on remote sensing and imaging technology, and also provides technical guidance for efficient real-time discrimination of crop phenology using mono-temporal UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半夏完成签到,获得积分10
2秒前
科研通AI5应助夕荀采纳,获得10
3秒前
如茵完成签到,获得积分10
4秒前
赴简发布了新的文献求助10
4秒前
4秒前
zhouxiuman完成签到,获得积分10
4秒前
Scout发布了新的文献求助10
4秒前
YYQX发布了新的文献求助10
5秒前
5秒前
周周发布了新的文献求助10
5秒前
6秒前
6秒前
共清欢完成签到,获得积分10
7秒前
Akim应助fazi采纳,获得10
7秒前
8秒前
8秒前
小孟发布了新的文献求助30
8秒前
9秒前
霜二完成签到 ,获得积分10
9秒前
hongyan完成签到,获得积分10
9秒前
如果完成签到,获得积分10
9秒前
可爱的函函应助wxy采纳,获得10
10秒前
娟儿发布了新的文献求助10
10秒前
科研通AI5应助十一采纳,获得10
10秒前
椒盐鲨鱼皮完成签到,获得积分10
10秒前
浏阳河发布了新的文献求助10
10秒前
沐夕完成签到,获得积分10
11秒前
11秒前
QL发布了新的文献求助30
11秒前
小粽子应助给我好好读书采纳,获得20
12秒前
13秒前
14秒前
dzvd发布了新的文献求助10
14秒前
谨慎乌完成签到,获得积分10
14秒前
幸运星完成签到 ,获得积分10
14秒前
15秒前
TCXXS完成签到 ,获得积分10
15秒前
啥也不会的生科实验人完成签到,获得积分10
16秒前
16秒前
lilac举报微笑的冰烟求助涉嫌违规
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993