Wheat phenology detection with the methodology of classification based on the time-series UAV images

物候学 特征选择 人工智能 遥感 播种 开花 分类器(UML) 模式识别(心理学) 数学 计算机科学 农学 生物 地理 栽培
作者
Meng Zhou,Hengbiao Zheng,Can He,Peng Liu,G.Mustafa Awan,Xue Wang,Tao Cheng,Yan Zhu,Weixing Cao,Xia Yao
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:292: 108798-108798 被引量:22
标识
DOI:10.1016/j.fcr.2022.108798
摘要

Near real-time crop phenology information can offer significant guidance for the implementation of crop management. Previous approaches to crop phenology detection have relied on time-series vegetation index curves, which can only be formed after the end of the whole phenology. To overcome the lag problem in phenology estimation, this study treats phenology detection as a classification problem based on imaging from an Unmanned Aerial Vehicle (UAV). Wheat field trials over two experimental seasons involved different sowing dates, nitrogen (N) rates, and wheat cultivars. A feature selection algorithm based on the compactness-separation principle (FS-CS) was used to filter the spectral and texture features extracted from time-series UAV images. The multi-level correlation vector machine (mRVM) was used to classify the principal phenological stages, including emergence, tillering, jointing, booting, and heading anthesis, filling, and maturity stages. The results showed that the classification accuracies of each stage were 0.86, 0.87, 0.31, 0.61, 0.22, 0.25, 0.77 and 0.93, respectively. Furthermore, the combination of spectral features and texture features has been proven to compensate for each other’s deficiencies, and the overall accuracy obtained using two features together increased by 27 % and 13 %, respectively. Finally, the efficiency of the feature selection algorithm and classifier used in this study were discussed. The best estimation results were generated using FS-CS and mRVM when the optimal number of features was small. This research provides theoretical support for instantaneous detection of crop phenology based on remote sensing and imaging technology, and also provides technical guidance for efficient real-time discrimination of crop phenology using mono-temporal UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
beenest发布了新的文献求助10
刚刚
1秒前
科研通AI5应助请叫我鬼才采纳,获得100
1秒前
oneday完成签到,获得积分10
1秒前
白色的风车完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
兰兰发布了新的文献求助10
2秒前
2秒前
yl完成签到,获得积分10
2秒前
kaka0934完成签到,获得积分10
3秒前
沐白发布了新的文献求助10
3秒前
高源发布了新的文献求助10
3秒前
DrY完成签到,获得积分20
3秒前
Lyven完成签到 ,获得积分10
3秒前
纪秋发布了新的文献求助10
3秒前
直率的青寒完成签到,获得积分10
3秒前
4秒前
万事顺意发布了新的文献求助10
4秒前
wxy发布了新的文献求助10
4秒前
rea完成签到,获得积分10
4秒前
Steven完成签到,获得积分10
4秒前
吴小苏完成签到,获得积分10
5秒前
ZYYZYY发布了新的文献求助30
5秒前
5秒前
5秒前
wwwu完成签到,获得积分10
5秒前
蜘猪侠发布了新的文献求助10
5秒前
科研通AI5应助烂漫的绿蝶采纳,获得10
5秒前
Gotyababy发布了新的文献求助10
6秒前
Yolo完成签到,获得积分10
6秒前
6秒前
Kenny发布了新的文献求助10
6秒前
6秒前
哪吒完成签到,获得积分20
6秒前
123466关注了科研通微信公众号
7秒前
oneday发布了新的文献求助10
7秒前
JIAYIWANG完成签到,获得积分20
7秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559