Wheat phenology detection with the methodology of classification based on the time-series UAV images

物候学 特征选择 人工智能 遥感 播种 开花 分类器(UML) 模式识别(心理学) 数学 计算机科学 农学 生物 地理 栽培
作者
Meng Zhou,Hengbiao Zheng,Chu He,Peng Liu,G.Mustafa Awan,Xue Wang,Tao Cheng,Yan Zhu,Weixing Cao,Xia Yao
出处
期刊:Field Crops Research [Elsevier]
卷期号:292: 108798-108798 被引量:15
标识
DOI:10.1016/j.fcr.2022.108798
摘要

Near real-time crop phenology information can offer significant guidance for the implementation of crop management. Previous approaches to crop phenology detection have relied on time-series vegetation index curves, which can only be formed after the end of the whole phenology. To overcome the lag problem in phenology estimation, this study treats phenology detection as a classification problem based on imaging from an Unmanned Aerial Vehicle (UAV). Wheat field trials over two experimental seasons involved different sowing dates, nitrogen (N) rates, and wheat cultivars. A feature selection algorithm based on the compactness-separation principle (FS-CS) was used to filter the spectral and texture features extracted from time-series UAV images. The multi-level correlation vector machine (mRVM) was used to classify the principal phenological stages, including emergence, tillering, jointing, booting, and heading anthesis, filling, and maturity stages. The results showed that the classification accuracies of each stage were 0.86, 0.87, 0.31, 0.61, 0.22, 0.25, 0.77 and 0.93, respectively. Furthermore, the combination of spectral features and texture features has been proven to compensate for each other’s deficiencies, and the overall accuracy obtained using two features together increased by 27 % and 13 %, respectively. Finally, the efficiency of the feature selection algorithm and classifier used in this study were discussed. The best estimation results were generated using FS-CS and mRVM when the optimal number of features was small. This research provides theoretical support for instantaneous detection of crop phenology based on remote sensing and imaging technology, and also provides technical guidance for efficient real-time discrimination of crop phenology using mono-temporal UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟大猫应助xzn1123采纳,获得30
刚刚
刚刚
刚刚
科研通AI5应助李李采纳,获得50
1秒前
祖f完成签到,获得积分10
1秒前
阿莫西林胶囊完成签到,获得积分10
2秒前
jason完成签到,获得积分10
2秒前
2秒前
科研通AI5应助吴岳采纳,获得10
3秒前
Sheila发布了新的文献求助10
3秒前
甜美的海瑶完成签到,获得积分10
4秒前
4秒前
4秒前
张牧之完成签到 ,获得积分10
4秒前
yuyukeke完成签到,获得积分10
5秒前
5秒前
沉默的婴完成签到 ,获得积分10
5秒前
6秒前
7秒前
Dita完成签到,获得积分10
7秒前
惠惠发布了新的文献求助10
7秒前
脑洞疼应助lan采纳,获得10
8秒前
9秒前
成就的笑南完成签到 ,获得积分10
10秒前
偷狗的小月亮完成签到,获得积分10
10秒前
爱吃泡芙完成签到,获得积分10
10秒前
ysl完成签到,获得积分10
11秒前
11秒前
爆米花应助pipge采纳,获得30
11秒前
彻底完成签到,获得积分10
12秒前
13秒前
韋晴完成签到,获得积分10
14秒前
14秒前
16秒前
领导范儿应助wenjian采纳,获得10
16秒前
16秒前
奇拉维特完成签到 ,获得积分10
16秒前
17秒前
Apple发布了新的文献求助10
17秒前
wtg完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808