Wheat phenology detection with the methodology of classification based on the time-series UAV images

物候学 特征选择 人工智能 遥感 播种 开花 分类器(UML) 模式识别(心理学) 数学 计算机科学 农学 生物 地理 栽培
作者
Meng Zhou,Hengbiao Zheng,Can He,Peng Liu,G.Mustafa Awan,Xue Wang,Tao Cheng,Yan Zhu,Weixing Cao,Xia Yao
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:292: 108798-108798 被引量:22
标识
DOI:10.1016/j.fcr.2022.108798
摘要

Near real-time crop phenology information can offer significant guidance for the implementation of crop management. Previous approaches to crop phenology detection have relied on time-series vegetation index curves, which can only be formed after the end of the whole phenology. To overcome the lag problem in phenology estimation, this study treats phenology detection as a classification problem based on imaging from an Unmanned Aerial Vehicle (UAV). Wheat field trials over two experimental seasons involved different sowing dates, nitrogen (N) rates, and wheat cultivars. A feature selection algorithm based on the compactness-separation principle (FS-CS) was used to filter the spectral and texture features extracted from time-series UAV images. The multi-level correlation vector machine (mRVM) was used to classify the principal phenological stages, including emergence, tillering, jointing, booting, and heading anthesis, filling, and maturity stages. The results showed that the classification accuracies of each stage were 0.86, 0.87, 0.31, 0.61, 0.22, 0.25, 0.77 and 0.93, respectively. Furthermore, the combination of spectral features and texture features has been proven to compensate for each other’s deficiencies, and the overall accuracy obtained using two features together increased by 27 % and 13 %, respectively. Finally, the efficiency of the feature selection algorithm and classifier used in this study were discussed. The best estimation results were generated using FS-CS and mRVM when the optimal number of features was small. This research provides theoretical support for instantaneous detection of crop phenology based on remote sensing and imaging technology, and also provides technical guidance for efficient real-time discrimination of crop phenology using mono-temporal UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩凡发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
DamenS发布了新的文献求助10
3秒前
同人一剑完成签到,获得积分10
4秒前
抹茶泡泡完成签到 ,获得积分10
5秒前
5秒前
ice贝发布了新的文献求助10
6秒前
Anmaterchem1发布了新的文献求助10
6秒前
科目三应助Apricot采纳,获得10
6秒前
7秒前
7秒前
日初发布了新的文献求助10
7秒前
7秒前
小栩发布了新的文献求助10
8秒前
8秒前
橘子不酸发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
源源元完成签到,获得积分20
11秒前
miaomiao发布了新的文献求助10
12秒前
oc666888完成签到,获得积分10
12秒前
sunaq发布了新的文献求助10
13秒前
13秒前
13秒前
源源元发布了新的文献求助10
14秒前
小鱼儿完成签到,获得积分10
14秒前
15秒前
15秒前
科研通AI5应助栀初采纳,获得10
15秒前
充电宝应助intume采纳,获得10
16秒前
16秒前
LEMONS应助共产主义战士采纳,获得10
16秒前
wang发布了新的文献求助10
16秒前
17秒前
黑猫小苍完成签到,获得积分10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954228
求助须知:如何正确求助?哪些是违规求助? 3500273
关于积分的说明 11098748
捐赠科研通 3230782
什么是DOI,文献DOI怎么找? 1786143
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801638