Automatic classification of Candida species using Raman spectroscopy and machine learning

人工智能 拉曼光谱 预处理器 卷积神经网络 过度拟合 机器学习 计算机科学 分类器(UML) 超参数 模式识别(心理学) 人工神经网络 光学 物理
作者
María Gabriela Fernández-Manteca,Alain A. Ocampo-Sosa,Carlos Ruiz de Alegría Puig,María Pía Roiz Mesones,Jorge Rodríguez-Grande,Fidel Madrazo,Jorge Calvo,L. Rodŕıguez-Cobo,José Miguel López Higuera,María Carmen Fariñas,Adolfo Cobo
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:290: 122270-122270 被引量:16
标识
DOI:10.1016/j.saa.2022.122270
摘要

One of the problems that most affect hospitals is infections by pathogenic microorganisms. Rapid identification and adequate, timely treatment can avoid fatal consequences and the development of antibiotic resistance, so it is crucial to use fast, reliable, and not too laborious techniques to obtain quick results. Raman spectroscopy has proven to be a powerful tool for molecular analysis, meeting these requirements better than traditional techniques. In this work, we have used Raman spectroscopy combined with machine learning algorithms to explore the automatic identification of eleven species of the genus Candida, the most common cause of fungal infections worldwide. The Raman spectra were obtained from more than 220 different measurements of dried drops from pure cultures of each Candida species using a Raman Confocal Microscope with a 532 nm laser excitation source. After developing a spectral preprocessing methodology, a study of the quality and variability of the measured spectra at the isolate and species level, and the spectral features contributing to inter-class variations, showed the potential to discriminate between those pathogenic yeasts. Several machine learning and deep learning algorithms were trained using hyperparameter optimization techniques to find the best possible classifier for this spectral data, in terms of accuracy and lowest possible overfitting. We found that a one-dimensional Convolutional Neural Network (1-D CNN) could achieve above 80 % overall accuracy for the eleven classes spectral dataset, with good generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
提拉米苏发布了新的文献求助10
1秒前
莫铭发布了新的文献求助10
1秒前
hfhkjh完成签到,获得积分10
1秒前
wpj发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
5秒前
6秒前
Ni发布了新的文献求助10
6秒前
7秒前
不爱学习完成签到,获得积分10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
momo应助科研通管家采纳,获得10
7秒前
8秒前
pluto应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
momo应助科研通管家采纳,获得10
8秒前
=Q应助科研通管家采纳,获得10
8秒前
momo应助科研通管家采纳,获得10
8秒前
Gauss应助科研通管家采纳,获得30
8秒前
安安应助科研通管家采纳,获得10
8秒前
影墨完成签到,获得积分10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
苏苏发布了新的文献求助10
8秒前
8秒前
9秒前
mengtian应助莫铭采纳,获得10
9秒前
田様应助莫铭采纳,获得10
9秒前
9秒前
科研通AI5应助哭泣的芷蝶采纳,获得10
10秒前
酷波er应助haimianbaobao采纳,获得10
10秒前
WXY发布了新的文献求助20
11秒前
茵似发布了新的文献求助10
12秒前
irislee发布了新的文献求助10
12秒前
14秒前
hmj完成签到,获得积分10
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540600
求助须知:如何正确求助?哪些是违规求助? 3117879
关于积分的说明 9332947
捐赠科研通 2815724
什么是DOI,文献DOI怎么找? 1547709
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712481