Artificial intelligence-based multi-omics analysis fuels cancer precision medicine

组学 表观基因组 计算机科学 精密医学 数据科学 人工智能 生物信息学 生物 遗传学 生物化学 基因 基因表达 DNA甲基化
作者
Xiujing He,Xiaowei Liu,Fengli Zuo,Hubing Shi,Jing Jing
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:88: 187-200 被引量:90
标识
DOI:10.1016/j.semcancer.2022.12.009
摘要

With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浑天与发布了新的文献求助10
刚刚
拼搏尔风发布了新的文献求助10
1秒前
禹代秋发布了新的文献求助10
3秒前
一只老呆猪应助zxvcbnm采纳,获得10
4秒前
彭于晏应助塔塔采纳,获得10
4秒前
myp完成签到,获得积分10
4秒前
懒羊羊完成签到,获得积分10
5秒前
情怀应助Chris采纳,获得10
5秒前
lin完成签到 ,获得积分10
5秒前
yuan完成签到,获得积分10
5秒前
顾矜应助CC采纳,获得10
6秒前
6秒前
6秒前
Orange应助lalala采纳,获得10
7秒前
7秒前
8秒前
Blank完成签到,获得积分10
8秒前
8秒前
lijl0529完成签到,获得积分10
9秒前
匹夫完成签到,获得积分10
9秒前
10秒前
mx完成签到 ,获得积分10
10秒前
Blank发布了新的文献求助10
11秒前
13秒前
星辰大海应助未桑采纳,获得10
13秒前
13秒前
不配.应助CG2021采纳,获得10
13秒前
song完成签到 ,获得积分10
13秒前
13秒前
子卿驳回了桐桐应助
14秒前
14秒前
自渡发布了新的文献求助10
14秒前
yyyalles完成签到,获得积分10
14秒前
jgpiao发布了新的文献求助10
14秒前
lc完成签到,获得积分10
15秒前
16秒前
不配.应助kkkkk46采纳,获得20
16秒前
萍123完成签到,获得积分10
16秒前
16秒前
初小花完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847