GCFnet: Global Collaborative Fusion Network for Multispectral and Panchromatic Image Classification

全色胶片 计算机科学 多光谱图像 稳健性(进化) 特征提取 人工智能 模式识别(心理学) 背景(考古学) 上下文图像分类 图像融合 数据挖掘 图像(数学) 生物 基因 古生物学 生物化学 化学
作者
Hui Zhao,Sicong Liu,Qian Du,Lorenzo Bruzzone,Yongjie Zheng,Kecheng Du,Xiaohua Tong,Huan Xie,Xiaolong Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:11
标识
DOI:10.1109/tgrs.2022.3215020
摘要

Among various multimodal remote sensing data, the pairing of multispectral (MS) and panchromatic (PAN) images is widely used in remote sensing applications. This article proposes a novel global collaborative fusion network (GCFnet) for joint classification of MS and PAN images. In particular, a global patch-free classification scheme based on an encoder-decoder deep learning (DL) network is developed to exploit context dependencies in the image. The proposed GCFnet is designed based on a novel collaborative fusion architecture, which mainly contains three parts: 1) two shallow-to-deep feature fusion branches related to individual MS and PAN images; 2) a multiscale cross-modal feature fusion branch of the two images, where an adaptive loss weighted fusion strategy is designed to calculate the total loss of two individual and the cross-modal branches; 3) a probability weighted decision fusion strategy for the fusion of the classification results of three branches to further improve the classification performance. Experimental results obtained on three real datasets covering complex urban scenarios confirm the effectiveness of the proposed GCFnet in terms of higher accuracy and robustness compared to existing methods. By utilizing both sampled and non-sampled position data in the feature extraction process, the proposed GCFnet can achieve excellent performance even in a small sample-size case. The codes will be available from the website: https://github.com/SicongLiuRS/GCFnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念想完成签到 ,获得积分10
1秒前
64658发布了新的文献求助80
2秒前
3秒前
3秒前
modernfamilyfan应助风趣乐荷采纳,获得10
3秒前
开心完成签到,获得积分10
5秒前
zxdnbb发布了新的文献求助10
6秒前
阿喵完成签到,获得积分10
6秒前
开放大开关注了科研通微信公众号
7秒前
Akim应助JunZhuoXiao采纳,获得10
8秒前
小野发布了新的文献求助10
9秒前
willlee发布了新的文献求助10
9秒前
李白发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
wwwww完成签到,获得积分10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得50
11秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
猪猪hero应助guochang采纳,获得10
12秒前
14秒前
wwwww发布了新的文献求助10
14秒前
15秒前
追寻的鞯完成签到,获得积分20
17秒前
李健的粉丝团团长应助LYY采纳,获得10
18秒前
19秒前
完美世界应助大真人采纳,获得10
19秒前
带点脑子读研求求你了完成签到,获得积分10
20秒前
所所应助zxdnbb采纳,获得10
21秒前
医学牲发布了新的文献求助10
22秒前
丘比特应助虚幻盼晴采纳,获得10
23秒前
24秒前
24秒前
香蕉觅云应助调皮小笼包采纳,获得10
25秒前
梦灵发布了新的文献求助10
25秒前
李爱国应助魔幻的泽洋采纳,获得10
25秒前
huang完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309