An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage

阳极 材料科学 封装(网络) 金属 自愈 液态金属 纳米技术 化学工程 电极 复合材料 计算机科学 冶金 化学 工程类 物理化学 替代医学 病理 医学 计算机网络
作者
Hanning Zhang,Pengyu Chen,Huan Xia,Gang Xu,Changwen Zhang,Tengfei Zhang,Wenwen Sun,Muhammadali Turgunov,Wei Zhang,ZhengMing Sun
出处
期刊:Energy and Environmental Science [The Royal Society of Chemistry]
卷期号:15 (12): 5240-5250 被引量:33
标识
DOI:10.1039/d2ee02147a
摘要

Given their high theoretical capacity, alloy-based anodes are promising candidates for lithium-ion batteries (LIBs) to meet the stringent demand of today's portable electronic devices and electric vehicles. However, the intrinsic limitations of volume expansion and irreversible pulverization lead to the sharp capacity decay and short cyclic life of the LIBs. Liquid metal (LM), possessing an inborn large capacity and inheriting deformability as liquids, can fundamentally avoid a large volume change during the electrochemical reactions. Herein, we report a facile strategy to self-assemble 2D Ti3C2Tx MXene into a 3D architecture, and simultaneously in situ encapsulate eutectic gallium indium (EGaIn) within the individual "MXene cell". Inside the cell, the extraction of lithium ions from the ternary solid alloy brings LM back to the binary liquid state, enabling a self-healing process of the cracked or pulverized structure; outside the cell, the elastic network of the Ti3C2Tx skeleton buffers the volume expansion of the lithiated EGaIn. The as-prepared LM-Ti3C2Tx anode exhibited a superior rate capability (489 mA h g−1 at 5 A g−1) and excellent cycling stability (409.8 mA h g−1 after 4500 cycles at 5 A g−1, 90.8% capacity retention). Furthermore, we demonstrated that the reversible liquid–solid phase transformation and the formation of a distinct indium core/gallium shell structure is responsible for its self-healing properties. This work shows great potential for solving the inherent volume expansion problems of alloy-based anode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
khjia发布了新的文献求助10
1秒前
KKND发布了新的文献求助20
1秒前
顺心代云完成签到 ,获得积分20
2秒前
慕青应助一一采纳,获得10
2秒前
bofu发布了新的文献求助10
3秒前
xiaomuke完成签到,获得积分20
3秒前
3秒前
乐乐应助畅快的涵蕾采纳,获得30
3秒前
4秒前
lunar发布了新的文献求助10
4秒前
Jasper应助Tanc采纳,获得10
5秒前
橘子完成签到,获得积分10
5秒前
wanci应助yuxin采纳,获得10
6秒前
充电宝应助天空下的回忆采纳,获得10
6秒前
6秒前
smallant发布了新的文献求助10
6秒前
7秒前
思源应助zhangling采纳,获得10
7秒前
khjia完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
ddd完成签到,获得积分10
9秒前
more应助橘子采纳,获得10
9秒前
科研通AI2S应助科研菜鸟采纳,获得10
9秒前
9秒前
Renee应助feitachi采纳,获得10
10秒前
10秒前
hswhswqkdh发布了新的文献求助10
11秒前
xiaomuke发布了新的文献求助20
11秒前
Zhang完成签到,获得积分10
12秒前
vivi完成签到,获得积分10
12秒前
12秒前
xiaohu完成签到,获得积分10
12秒前
充电宝应助寻一采纳,获得10
13秒前
123发布了新的文献求助10
13秒前
斯文败类应助郎治宇采纳,获得10
13秒前
bofu发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160703
求助须知:如何正确求助?哪些是违规求助? 2811860
关于积分的说明 7893601
捐赠科研通 2470679
什么是DOI,文献DOI怎么找? 1315754
科研通“疑难数据库(出版商)”最低求助积分说明 630993
版权声明 602053