数学
索波列夫空间
指数
非线性系统
紧凑空间
分数拉普拉斯
临界指数
数学分析
类型(生物学)
拉普拉斯算子
纯数学
物理
几何学
量子力学
缩放比例
生态学
哲学
语言学
生物
作者
Xiaolu Lin,Shenzhou Zheng
标识
DOI:10.1080/17476933.2023.2193741
摘要
This paper is devoted to multiple solutions to a Kirchhoff–Schrödinger type problem of fractional p-Laplacian involving the Sobolev–Hardy critical exponent and a parameter λ>0. With some suitable assumptions on the potential V(x) and the nonlinearity f(x,u), the Krasnoselskii's genus argument is exploited to show the existence of infinitely many solutions if λ is sufficiently large. Furthermore, we employ a fractional version of the concentration-compactness to prove that there are m-pairs solutions of the problem provided that λ is small enough and the nonlinear force f(x,⋅) is odd.
科研通智能强力驱动
Strongly Powered by AbleSci AI