Public discourse and sentiment during Mpox outbreak: an analysis using natural language processing

公共卫生 社会化媒体 政府(语言学) 情绪分析 爆发 公共关系 内容分析 主题模型 政治学 社会学 医学 计算机科学 社会科学 万维网 语言学 人工智能 护理部 病理 哲学
作者
V. S. Anoop,S. Sasirekha* & Sreelakshmi**
出处
期刊:Public Health [Elsevier]
卷期号:218: 114-120 被引量:7
标识
DOI:10.1016/j.puhe.2023.02.018
摘要

Mpox has been declared a Public Health Emergency of International Concern by the World Health Organization on July 23, 2022. Since early May 2022, Mpox has been continuously reported in several endemic countries with alarming death rates. This led to several discussions and deliberations on the Mpox virus among the general public through social media and platforms such as health forums. This study proposes natural language processing techniques such as topic modeling to unearth the general public's perspectives and sentiments on growing Mpox cases worldwide. This was a detailed qualitative study using natural language processing on the user-generated comments from social media. A detailed analysis using topic modeling and sentiment analysis on Reddit comments (n = 289,073) that were posted between June 1 and August 5, 2022, was conducted. While the topic modeling was used to infer major themes related to the health emergency and user concerns, the sentiment analysis was conducted to see how the general public responded to different aspects of the outbreak. The results revealed several interesting and useful themes, such as Mpox symptoms, Mpox transmission, international travel, government interventions, and homophobia from the user-generated contents. The results further confirm that there are many stigmas and fear of the unknown nature of the Mpox virus, which is prevalent in almost all topics and themes unearthed. Analyzing public discourse and sentiments toward health emergencies and disease outbreaks is highly important. The insights that could be leveraged from the user-generated comments from public forums such as social media may be important for community health intervention programs and infodemiology researchers. The findings from this study effectively analyzed the public perceptions that may enable quantifying the effectiveness of measures imposed by governmental administrations. The themes unearthed may also benefit health policy researchers and decision-makers to make informed and data-driven decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
less12323完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
2秒前
糕糕完成签到,获得积分10
4秒前
4秒前
HYC完成签到,获得积分10
5秒前
HH0129完成签到,获得积分10
5秒前
6秒前
踏实的道消完成签到 ,获得积分10
8秒前
NuLi完成签到 ,获得积分10
8秒前
乐乐应助小铃铛采纳,获得10
9秒前
顾矜应助mm_zxh采纳,获得10
9秒前
乐观沛白完成签到 ,获得积分10
12秒前
tiantian完成签到,获得积分20
12秒前
13秒前
13秒前
英姑应助旎旎采纳,获得10
13秒前
14秒前
Orange应助火星上的糖豆采纳,获得10
14秒前
15秒前
15秒前
二号完成签到,获得积分10
15秒前
郑夏岚发布了新的文献求助10
16秒前
16秒前
16秒前
hea完成签到,获得积分10
16秒前
dai发布了新的文献求助10
17秒前
儒雅慕灵完成签到,获得积分20
18秒前
18秒前
猫大熊发布了新的文献求助10
18秒前
18秒前
华仔应助Upupupppp采纳,获得10
19秒前
Joshua完成签到,获得积分10
19秒前
20秒前
GG发布了新的文献求助10
20秒前
希望天下0贩的0应助lee采纳,获得30
20秒前
HP发布了新的文献求助10
20秒前
紫易完成签到 ,获得积分20
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146046
求助须知:如何正确求助?哪些是违规求助? 2797450
关于积分的说明 7824222
捐赠科研通 2453810
什么是DOI,文献DOI怎么找? 1305876
科研通“疑难数据库(出版商)”最低求助积分说明 627593
版权声明 601491