桑格测序
遗传学
生物
遗传连锁
拷贝数变化
基因座(遗传学)
候选基因
基因
单倍型
比较基因组杂交
基因组
DNA测序
等位基因
作者
Idan Hecht,Chen Weiner,Alina Kotlyar,Nadav Shoshany,Eran Pras
标识
DOI:10.1016/j.exer.2023.109459
摘要
Nystagmus is an ocular condition characterized by bilateral involuntary ocular oscillation which can severely affect vision. When not associated with other ocular or systemic diseases, it is referred to as idiopathic or congenital motor nystagmus (CMN). Genome-wide linkage studies have previously identified several loci associated with CMN, however the genes responsible for some of these loci have yet to be identified. We have examined a large, five-generation family with autosomal dominant CMN. Our purpose was to characterize the clinical manifestations and reveal the molecular basis of the disease in this family. In addition to full ophthalmic examination and imaging, molecular analysis included copy number variation analysis, linkage studies, and Sanger sequencing. Expression analyses of candidate genes was done by real-time PCR. Of the 68 family members, 27 subjects in five-generations had CMN, in line with an autosomal dominant inheritance pattern. Molecular analysis was performed on 27 members, 15 of them affected by CMN. Copy number variation analysis using array comparative genomic hybridization (aCGH) revealed a novel deletion located on 1q32 (NYS7) among affected individuals. Linkage analysis using polymorphic markers demonstrated full segregation with a heterozygous haplotype in all affected patients, with a LOD score of >5. Sanger sequencing of affected subjects revealed a novel deletion of 732,526 bp in the linkage interval. No protein-coding genes exist within the deleted region; however, the deletion disrupts topologically associated domains encompassing the gene NR5A2 and the non-protein coding MIR181A. Both are strongly associated with other genes expressed in the retina such as PROX1, which in turn is also associated with genes related to nystagmus such as PAX6. We therefore hypothesized that the deletion might affect NR5A2 and MIR181A expression, causing CMN. Expression analysis by real-time PCR showed significantly lower expression of NR5A2, and significantly higher expression of PROX1 among patients compared with controls. To conclude, among a large five-generation family with autosomal dominant CMN, a large deletion in the interval of NYS7 was linked with the disease. No protein-coding genes exist inside the deleted region, and so the exact mechanism in which CMN is caused is uncertain. Based on topological association and expression analyses we suggest a possible mechanism for the pathogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI