4D printing of biodegradable shape memory double-network hydrogel for highly bionic devices

自愈水凝胶 材料科学 傅里叶变换红外光谱 极限抗拉强度 扫描电子显微镜 化学工程 复合材料 纳米技术 高分子化学 工程类
作者
Minzimo Song,Guiyou Zhu,Xiong Li
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:24: 2935-2945 被引量:7
标识
DOI:10.1016/j.jmrt.2023.03.180
摘要

Hydrogels are attractive for bionic devices due to their sensing ability and flexibility, similar to human skin. However, current hydrogels hardly combine mechanical, water retention, sensing, actuating, and degradation performances, which significantly limits the application of hydrogels in highly bionic devices. In this paper, a biodegradable shape memory 4D printing hydrogel ink was prepared by bio-polyurethane (BPU), carboxymethyl chitosan (CMCS), and carbomer (CBM). The hydrogel ink had a high tensile strength (stress of 0.66 MPa, elongation at break of 643%), outstanding water retention (>85.87%), ionic conductivity (8.59 S m−1), and excellent sensing performance (S = 0.051 kPa−1, GF = 2.9). Fourier transform infrared reflection, X-ray diffractometer, and X-ray photoelectron spectroscopy data showed that the BPU, CMCS, and CBM form a double network structure through chemical, hydrogen, and ionic bonding cross-linking, respectively. After 4D printing, a continuous pore structure could be observed by scanning electron microscopy in the hydrogel model. The continuous pore structure provided channels for the movement of ions in the hydrogel model so that the pressure could be converted into a specific signal. Following the signal, a computer-controlled temperature rapidly heated the hydrogel model to 50 °C, and the hydrogel model could change shape autonomously. The excellent properties and highly bionic functions of biodegradable shape memory double-network hydrogel have broken through the limitations of applications in artificial intelligence robotics, human-machine interfaces, tissue engineering, and other fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助AT采纳,获得10
1秒前
隐形曼青应助王云豆采纳,获得10
1秒前
Jason举报ngg求助涉嫌违规
1秒前
Mya发布了新的文献求助10
2秒前
慢慢发布了新的文献求助10
2秒前
Zachary发布了新的文献求助10
3秒前
丰富的觅荷关注了科研通微信公众号
3秒前
3秒前
3秒前
老猪佩奇完成签到,获得积分10
3秒前
科目三应助芋泥波波采纳,获得10
4秒前
5秒前
善学以致用应助苹果听枫采纳,获得10
5秒前
5秒前
5秒前
SZQ发布了新的文献求助30
6秒前
罗氏集团发布了新的文献求助10
6秒前
6秒前
李想完成签到,获得积分10
6秒前
6秒前
老猪佩奇发布了新的文献求助10
6秒前
6秒前
李若水发布了新的文献求助10
7秒前
积极的千雁完成签到,获得积分10
7秒前
7秒前
深情安青应助清爽灰狼采纳,获得10
8秒前
赘婿应助xlj采纳,获得10
8秒前
lilysmile001完成签到,获得积分10
8秒前
所所应助WANGHONG采纳,获得10
8秒前
小鞠发布了新的文献求助10
9秒前
草拟大坝发布了新的文献求助10
9秒前
袁大头发布了新的文献求助10
10秒前
10秒前
橘子完成签到,获得积分10
11秒前
冰糖葫芦发布了新的文献求助30
11秒前
在水一方应助胖子东采纳,获得20
12秒前
12秒前
mm完成签到,获得积分10
12秒前
xzyin发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542444
求助须知:如何正确求助?哪些是违规求助? 3119706
关于积分的说明 9340451
捐赠科研通 2817558
什么是DOI,文献DOI怎么找? 1549184
邀请新用户注册赠送积分活动 722039
科研通“疑难数据库(出版商)”最低求助积分说明 712928