A robust and automatic CT‐3D ultrasound registration method based on segmentation, context, and edge hybrid metric

人工智能 图像配准 计算机科学 分割 计算机视觉 Sørensen–骰子系数 体素 公制(单位) 初始化 背景(考古学) 图像分割 模式识别(心理学) 图像(数学) 古生物学 经济 生物 程序设计语言 运营管理
作者
Baochun He,Sheng Zhao,Yanmei Dai,Jiaqi Wu,Huoling Luo,Jianxi Guo,Zhipeng Ni,Tianchong Wu,Fangyuan Kuang,Huijie Jiang,Yanfang Zhang,Fucang Jia
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6243-6258 被引量:1
标识
DOI:10.1002/mp.16396
摘要

The fusion of computed tomography (CT) and ultrasound (US) image can enhance lesion detection ability and improve the success rate of liver interventional radiology. The image-based fusion methods encounter the challenge of registration initialization due to the random scanning pose and limited field of view of US. Existing automatic methods those used vessel geometric information and intensity-based metric are sensitive to parameters and have low success rate. The learning-based methods require a large number of registered datasets for training.The aim of this study is to provide a fully automatic and robust US-3D CT registration method without registered training data and user-specified parameters assisted by the revolutionary deep learning-based segmentation, which can further be used for preparing training samples for the study of learning-based methods.We propose a fully automatic CT-3D US registration method by two improved registration metrics. We propose to use 3D U-Net-based multi-organ segmentation of US and CT to assist the conventional registration. The rigid transform is searched in the space of any paired vessel bifurcation planes where the best transform is decided by a segmentation overlap metric, which is more related to the segmentation precision than Dice coefficient. In nonrigid registration phase, we propose a hybrid context and edge based image similarity metric with a simple mask that can remove most noisy US voxels to guide the B-spline transform registration. We evaluate our method on 42 paired CT-3D US datasets scanned with two different US devices from two hospitals. We compared our methods with other exsiting methods with both quantitative measures of target registration error (TRE) and the Jacobian determinent with paired t-test and qualitative registration imaging results.The results show that our method achieves fully automatic rigid registration TRE of 4.895 mm, deformable registration TRE of 2.995 mm in average, which outperforms state-of-the-art automatic linear methods and nonlinear registration metrics with paired t-test's p value less than 0.05. The proposed overlap metric achieves better results than self similarity description (SSD), edge matching (EM), and block matching (BM) with p values of 1.624E-10, 4.235E-9, and 0.002, respectively. The proposed hybrid edge and context-based metric outperforms context-only, edge-only, and intensity statistics-only-based metrics with p values of 0.023, 3.81E-5, and 1.38E-15, respectively. The 3D US segmentation has achieved mean Dice similarity coefficient (DSC) of 0.799, 0.724, 0.788, and precision of 0.871, 0.769, 0.862 for gallbladder, vessel, and branch vessel, respectively.The deep learning-based US segmentation can achieve satisfied result to assist robust conventional rigid registration. The Dice similarity coefficient-based metrics, hybrid context, and edge image similarity metric contribute to robust and accurate registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄瓜双耳拌腐竹完成签到,获得积分10
刚刚
zby发布了新的文献求助10
刚刚
Rondab应助ljc采纳,获得10
1秒前
2秒前
ranjeah完成签到 ,获得积分10
2秒前
3秒前
层积云关注了科研通微信公众号
5秒前
5秒前
6秒前
7秒前
hushidi发布了新的文献求助10
9秒前
胖头鱼完成签到,获得积分10
11秒前
车厘子发布了新的文献求助10
12秒前
Akim应助研究生吗喽采纳,获得10
13秒前
花椒小透明完成签到,获得积分20
14秒前
wangqing发布了新的文献求助10
15秒前
小王发布了新的文献求助10
18秒前
19秒前
20秒前
桐桐应助HonamC采纳,获得10
22秒前
橙浅完成签到,获得积分10
23秒前
炙热莫言完成签到,获得积分20
23秒前
ling_lz发布了新的文献求助10
24秒前
我是老大应助超人采纳,获得10
26秒前
26秒前
zhangyu应助三毛采纳,获得10
26秒前
CipherSage应助郭郭采纳,获得10
27秒前
炙热莫言发布了新的文献求助20
28秒前
淼吉发布了新的文献求助10
28秒前
28秒前
lvxinyan完成签到,获得积分10
29秒前
30秒前
31秒前
归尘发布了新的文献求助10
32秒前
等待的夜香完成签到,获得积分10
34秒前
Chimmy发布了新的文献求助10
35秒前
YAO发布了新的文献求助10
35秒前
water应助薛定谔的猫采纳,获得10
36秒前
HonamC发布了新的文献求助10
37秒前
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712