亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A robust and automatic CT‐3D ultrasound registration method based on segmentation, context, and edge hybrid metric

人工智能 图像配准 计算机科学 分割 计算机视觉 Sørensen–骰子系数 体素 公制(单位) 初始化 背景(考古学) 图像分割 模式识别(心理学) 图像(数学) 古生物学 运营管理 经济 生物 程序设计语言
作者
Baochun He,Sheng Zhao,Yanmei Dai,Jiaqi Wu,Huoling Luo,Jianxi Guo,Zhipeng Ni,Tianchong Wu,Fangyuan Kuang,Huijie Jiang,Yanfang Zhang,Fucang Jia
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6243-6258 被引量:1
标识
DOI:10.1002/mp.16396
摘要

The fusion of computed tomography (CT) and ultrasound (US) image can enhance lesion detection ability and improve the success rate of liver interventional radiology. The image-based fusion methods encounter the challenge of registration initialization due to the random scanning pose and limited field of view of US. Existing automatic methods those used vessel geometric information and intensity-based metric are sensitive to parameters and have low success rate. The learning-based methods require a large number of registered datasets for training.The aim of this study is to provide a fully automatic and robust US-3D CT registration method without registered training data and user-specified parameters assisted by the revolutionary deep learning-based segmentation, which can further be used for preparing training samples for the study of learning-based methods.We propose a fully automatic CT-3D US registration method by two improved registration metrics. We propose to use 3D U-Net-based multi-organ segmentation of US and CT to assist the conventional registration. The rigid transform is searched in the space of any paired vessel bifurcation planes where the best transform is decided by a segmentation overlap metric, which is more related to the segmentation precision than Dice coefficient. In nonrigid registration phase, we propose a hybrid context and edge based image similarity metric with a simple mask that can remove most noisy US voxels to guide the B-spline transform registration. We evaluate our method on 42 paired CT-3D US datasets scanned with two different US devices from two hospitals. We compared our methods with other exsiting methods with both quantitative measures of target registration error (TRE) and the Jacobian determinent with paired t-test and qualitative registration imaging results.The results show that our method achieves fully automatic rigid registration TRE of 4.895 mm, deformable registration TRE of 2.995 mm in average, which outperforms state-of-the-art automatic linear methods and nonlinear registration metrics with paired t-test's p value less than 0.05. The proposed overlap metric achieves better results than self similarity description (SSD), edge matching (EM), and block matching (BM) with p values of 1.624E-10, 4.235E-9, and 0.002, respectively. The proposed hybrid edge and context-based metric outperforms context-only, edge-only, and intensity statistics-only-based metrics with p values of 0.023, 3.81E-5, and 1.38E-15, respectively. The 3D US segmentation has achieved mean Dice similarity coefficient (DSC) of 0.799, 0.724, 0.788, and precision of 0.871, 0.769, 0.862 for gallbladder, vessel, and branch vessel, respectively.The deep learning-based US segmentation can achieve satisfied result to assist robust conventional rigid registration. The Dice similarity coefficient-based metrics, hybrid context, and edge image similarity metric contribute to robust and accurate registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
某某某发布了新的文献求助10
16秒前
41秒前
44秒前
丁牛青发布了新的文献求助10
49秒前
风起云涌龙完成签到 ,获得积分0
55秒前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
SciGPT应助丁牛青采纳,获得10
1分钟前
光亮的自行车完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
某某某发布了新的文献求助10
1分钟前
英姑应助Kevin采纳,获得30
2分钟前
慕青应助用眼睛吃饭的人采纳,获得10
2分钟前
2分钟前
平常从蓉完成签到,获得积分10
2分钟前
某某某发布了新的文献求助10
2分钟前
2分钟前
用眼睛吃饭的人完成签到,获得积分10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
3分钟前
某某某发布了新的文献求助10
3分钟前
MAYAN完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
LZN发布了新的文献求助10
3分钟前
4分钟前
gszy1975完成签到,获得积分10
4分钟前
某某某发布了新的文献求助10
4分钟前
棒棒冰完成签到 ,获得积分10
4分钟前
4分钟前
动听剑心发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
zjj关注了科研通微信公众号
4分钟前
平凡中的限量版完成签到,获得积分10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303270
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482479
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425919
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005