A Survey of AI-enabled Dynamic Manufacturing Scheduling: From Directed Heuristics to Autonomous Learning

计算机科学 动态优先级调度 调度(生产过程) 启发式 作业车间调度 自动计划和调度 遗传算法调度 工业工程 人工智能 两级调度 分布式计算 运筹学 地铁列车时刻表 数学优化 数学 工程类 操作系统
作者
Jiepin Ding,Mingsong Chen,Ting Wang,Junlong Zhou,Xin Fu,Keqin Li
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (14s): 1-36 被引量:7
标识
DOI:10.1145/3590163
摘要

As one of the most complex parts in manufacturing systems, scheduling plays an important role in the efficient allocation of resources to meet individual customization requirements. However, due to the uncertain disruptions (e.g., task arrival time, service breakdown duration) of manufacturing processes, how to respond to various dynamics in manufacturing to keep the scheduling process moving forward smoothly and efficiently is becoming a major challenge in dynamic manufacturing scheduling. To solve such a problem, a wide spectrum of artificial intelligence techniques have been developed to (1) accurately construct dynamic scheduling models that can represent both personalized customer needs and uncertain provider capabilities and (2) efficiently obtain a qualified schedule within a limited time. From these two perspectives, this article systemically makes a state-of-the-art literature survey on the application of these artificial intelligence techniques in dynamic manufacturing modeling and scheduling. It first introduces two types of dynamic scheduling problems that consider service- and task-related disruptions in the manufacturing process, respectively, followed by a bibliometric analysis of artificial intelligence techniques for dynamic manufacturing scheduling. Next, various kinds of artificial-intelligence-enabled schedulers for solving dynamic scheduling problems including both directed heuristics and autonomous learning methods are reviewed, which strive not only to quickly obtain optimized solutions but also to effectively achieve the adaption to dynamics. Finally, this article further elaborates on the future opportunities and challenges of using artificial-intelligence-enabled schedulers to solve complex dynamic scheduling problems. In summary, this survey aims to present a thorough and organized overview of artificial-intelligence-enabled dynamic manufacturing scheduling and shed light on some related research directions that are worth studying in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助61采纳,获得10
刚刚
刚刚
刚刚
冷艳的无施完成签到,获得积分10
刚刚
哈哈发布了新的文献求助10
2秒前
2秒前
重要冷雁完成签到,获得积分10
3秒前
lidd驳回了nenoaowu应助
5秒前
英俊的铭应助冷艳的无施采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
无花果应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得20
7秒前
7秒前
LEE完成签到,获得积分20
7秒前
mhl11应助科研通管家采纳,获得20
7秒前
毛豆应助科研通管家采纳,获得10
8秒前
毛豆应助科研通管家采纳,获得10
8秒前
8秒前
毛豆应助科研通管家采纳,获得10
8秒前
毛豆应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
愉快夕阳完成签到,获得积分20
9秒前
9秒前
9秒前
ding应助zheng能量采纳,获得10
9秒前
park完成签到,获得积分10
10秒前
10秒前
11秒前
灰灰完成签到 ,获得积分10
11秒前
勤恳的毛衣完成签到,获得积分10
12秒前
12秒前
orixero应助张土豆采纳,获得10
13秒前
13秒前
wangtao发布了新的文献求助10
14秒前
YanZhe完成签到,获得积分10
16秒前
zq完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292561
求助须知:如何正确求助?哪些是违规求助? 2928864
关于积分的说明 8438726
捐赠科研通 2600953
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642924