A Survey of AI-enabled Dynamic Manufacturing Scheduling: From Directed Heuristics to Autonomous Learning

计算机科学 动态优先级调度 调度(生产过程) 启发式 作业车间调度 自动计划和调度 遗传算法调度 工业工程 人工智能 两级调度 分布式计算 运筹学 地铁列车时刻表 数学优化 操作系统 工程类 数学
作者
Jiepin Ding,Mingsong Chen,Ting Wang,Junlong Zhou,Xin Fu,Keqin Li
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (14s): 1-36 被引量:16
标识
DOI:10.1145/3590163
摘要

As one of the most complex parts in manufacturing systems, scheduling plays an important role in the efficient allocation of resources to meet individual customization requirements. However, due to the uncertain disruptions (e.g., task arrival time, service breakdown duration) of manufacturing processes, how to respond to various dynamics in manufacturing to keep the scheduling process moving forward smoothly and efficiently is becoming a major challenge in dynamic manufacturing scheduling. To solve such a problem, a wide spectrum of artificial intelligence techniques have been developed to (1) accurately construct dynamic scheduling models that can represent both personalized customer needs and uncertain provider capabilities and (2) efficiently obtain a qualified schedule within a limited time. From these two perspectives, this article systemically makes a state-of-the-art literature survey on the application of these artificial intelligence techniques in dynamic manufacturing modeling and scheduling. It first introduces two types of dynamic scheduling problems that consider service- and task-related disruptions in the manufacturing process, respectively, followed by a bibliometric analysis of artificial intelligence techniques for dynamic manufacturing scheduling. Next, various kinds of artificial-intelligence-enabled schedulers for solving dynamic scheduling problems including both directed heuristics and autonomous learning methods are reviewed, which strive not only to quickly obtain optimized solutions but also to effectively achieve the adaption to dynamics. Finally, this article further elaborates on the future opportunities and challenges of using artificial-intelligence-enabled schedulers to solve complex dynamic scheduling problems. In summary, this survey aims to present a thorough and organized overview of artificial-intelligence-enabled dynamic manufacturing scheduling and shed light on some related research directions that are worth studying in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
xiangwei发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
严明发布了新的文献求助10
4秒前
6秒前
浮游应助自然冥茗采纳,获得10
6秒前
花粉过敏发布了新的文献求助10
7秒前
脑洞疼应助犹豫晓啸采纳,获得10
8秒前
善学以致用应助张艺凡采纳,获得30
10秒前
一碗晚月完成签到,获得积分10
11秒前
y大哥略略略完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
英俊的铭应助y大哥略略略采纳,获得10
14秒前
14秒前
orixero应助minute采纳,获得10
14秒前
大力的宝川完成签到 ,获得积分10
14秒前
15秒前
15秒前
大道无痕发布了新的文献求助10
17秒前
科研通AI6应助程雯慧采纳,获得10
17秒前
17秒前
tian发布了新的文献求助10
19秒前
犹豫晓啸发布了新的文献求助10
19秒前
思源应助科研安徒生采纳,获得10
19秒前
鹤轩发布了新的文献求助10
20秒前
21秒前
21秒前
英姑应助清秀的踏歌采纳,获得10
23秒前
23秒前
shen发布了新的文献求助10
23秒前
Babe1934发布了新的文献求助10
24秒前
小刘一定能读C9博完成签到,获得积分10
24秒前
ket完成签到,获得积分10
25秒前
小太阳发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325