A Survey of AI-enabled Dynamic Manufacturing Scheduling: From Directed Heuristics to Autonomous Learning

计算机科学 动态优先级调度 调度(生产过程) 启发式 作业车间调度 自动计划和调度 遗传算法调度 工业工程 人工智能 两级调度 分布式计算 运筹学 地铁列车时刻表 数学优化 数学 工程类 操作系统
作者
Jiepin Ding,Mingsong Chen,Ting Wang,Junlong Zhou,Xin Fu,Keqin Li
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (14s): 1-36 被引量:16
标识
DOI:10.1145/3590163
摘要

As one of the most complex parts in manufacturing systems, scheduling plays an important role in the efficient allocation of resources to meet individual customization requirements. However, due to the uncertain disruptions (e.g., task arrival time, service breakdown duration) of manufacturing processes, how to respond to various dynamics in manufacturing to keep the scheduling process moving forward smoothly and efficiently is becoming a major challenge in dynamic manufacturing scheduling. To solve such a problem, a wide spectrum of artificial intelligence techniques have been developed to (1) accurately construct dynamic scheduling models that can represent both personalized customer needs and uncertain provider capabilities and (2) efficiently obtain a qualified schedule within a limited time. From these two perspectives, this article systemically makes a state-of-the-art literature survey on the application of these artificial intelligence techniques in dynamic manufacturing modeling and scheduling. It first introduces two types of dynamic scheduling problems that consider service- and task-related disruptions in the manufacturing process, respectively, followed by a bibliometric analysis of artificial intelligence techniques for dynamic manufacturing scheduling. Next, various kinds of artificial-intelligence-enabled schedulers for solving dynamic scheduling problems including both directed heuristics and autonomous learning methods are reviewed, which strive not only to quickly obtain optimized solutions but also to effectively achieve the adaption to dynamics. Finally, this article further elaborates on the future opportunities and challenges of using artificial-intelligence-enabled schedulers to solve complex dynamic scheduling problems. In summary, this survey aims to present a thorough and organized overview of artificial-intelligence-enabled dynamic manufacturing scheduling and shed light on some related research directions that are worth studying in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助myq采纳,获得10
1秒前
Jasper应助优雅的冷卉采纳,获得10
2秒前
2秒前
谢大喵发布了新的文献求助10
2秒前
斯文败类应助Zyxx采纳,获得10
2秒前
evelyn发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
罗柠七发布了新的文献求助20
3秒前
语物完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
领导范儿应助方旋采纳,获得10
4秒前
等待戈多完成签到,获得积分10
5秒前
5秒前
大头发布了新的文献求助20
6秒前
caigou完成签到,获得积分10
6秒前
ll发布了新的文献求助10
6秒前
Shark发布了新的文献求助10
7秒前
元谷雪发布了新的文献求助10
8秒前
8秒前
9秒前
金福珠发布了新的文献求助10
9秒前
qiii发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
Wind应助ichia采纳,获得10
11秒前
yu完成签到,获得积分20
11秒前
11秒前
赘婿应助饱满凡灵采纳,获得30
11秒前
李耀京完成签到,获得积分10
12秒前
13秒前
蚝油盗梨发布了新的文献求助10
13秒前
yu发布了新的文献求助10
14秒前
希望天下0贩的0应助coco采纳,获得10
15秒前
活泼红牛完成签到,获得积分10
15秒前
15秒前
15秒前
yl发布了新的文献求助10
16秒前
英勇善愁完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233