A Survey of AI-enabled Dynamic Manufacturing Scheduling: From Directed Heuristics to Autonomous Learning

计算机科学 动态优先级调度 调度(生产过程) 启发式 作业车间调度 自动计划和调度 遗传算法调度 工业工程 人工智能 两级调度 分布式计算 运筹学 地铁列车时刻表 数学优化 数学 工程类 操作系统
作者
Jiepin Ding,Mingsong Chen,Ting Wang,Junlong Zhou,Xin Fu,Keqin Li
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (14s): 1-36 被引量:16
标识
DOI:10.1145/3590163
摘要

As one of the most complex parts in manufacturing systems, scheduling plays an important role in the efficient allocation of resources to meet individual customization requirements. However, due to the uncertain disruptions (e.g., task arrival time, service breakdown duration) of manufacturing processes, how to respond to various dynamics in manufacturing to keep the scheduling process moving forward smoothly and efficiently is becoming a major challenge in dynamic manufacturing scheduling. To solve such a problem, a wide spectrum of artificial intelligence techniques have been developed to (1) accurately construct dynamic scheduling models that can represent both personalized customer needs and uncertain provider capabilities and (2) efficiently obtain a qualified schedule within a limited time. From these two perspectives, this article systemically makes a state-of-the-art literature survey on the application of these artificial intelligence techniques in dynamic manufacturing modeling and scheduling. It first introduces two types of dynamic scheduling problems that consider service- and task-related disruptions in the manufacturing process, respectively, followed by a bibliometric analysis of artificial intelligence techniques for dynamic manufacturing scheduling. Next, various kinds of artificial-intelligence-enabled schedulers for solving dynamic scheduling problems including both directed heuristics and autonomous learning methods are reviewed, which strive not only to quickly obtain optimized solutions but also to effectively achieve the adaption to dynamics. Finally, this article further elaborates on the future opportunities and challenges of using artificial-intelligence-enabled schedulers to solve complex dynamic scheduling problems. In summary, this survey aims to present a thorough and organized overview of artificial-intelligence-enabled dynamic manufacturing scheduling and shed light on some related research directions that are worth studying in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
剋剋发布了新的文献求助10
刚刚
刚刚
友好的向日葵完成签到,获得积分10
刚刚
柏康娜完成签到,获得积分10
1秒前
2秒前
Mlwwq发布了新的文献求助10
2秒前
xuxingjie完成签到,获得积分10
2秒前
搜集达人应助ahead采纳,获得10
2秒前
多巴胺发布了新的文献求助10
2秒前
所所应助整齐的豆芽采纳,获得10
2秒前
2秒前
3秒前
Avery发布了新的文献求助10
3秒前
zyz完成签到,获得积分10
4秒前
4秒前
4秒前
寻找组织应助fun采纳,获得40
5秒前
passerby发布了新的文献求助10
5秒前
5秒前
OB发布了新的文献求助10
5秒前
5秒前
123完成签到,获得积分10
6秒前
Ava应助A_Brute采纳,获得10
6秒前
啊亮完成签到,获得积分10
6秒前
ranranran发布了新的文献求助10
6秒前
KOAS完成签到,获得积分10
6秒前
烂漫的碧萱完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
浮游应助TrDoubleE采纳,获得10
8秒前
9秒前
CodeCraft应助玄天明月采纳,获得10
9秒前
Jasper应助地球采纳,获得10
9秒前
穆思柔完成签到,获得积分10
9秒前
思源应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656