Mendelian randomization in cardiometabolic disease: challenges in evaluating causality

孟德尔随机化 医学 因果关系(物理学) 疾病 冠心病 生物信息学 计算生物学 内科学 遗传学 遗传变异 基因 量子力学 生物 物理 基因型
作者
Michael V. Holmes,Mika Ala‐Korpela,George Davey Smith
出处
期刊:Nature Reviews Cardiology [Nature Portfolio]
卷期号:14 (10): 577-590 被引量:442
标识
DOI:10.1038/nrcardio.2017.78
摘要

Mendelian randomization (MR) is an increasingly common tool that involves the use of genetic variants to evaluate causal relationships between exposures and outcomes. In this Review, Holmes et al. describe some of the scenarios in which findings from MR analyses can be challenging to evaluate, using examples from studies on cardiometabolic diseases. Mendelian randomization (MR) is a burgeoning field that involves the use of genetic variants to assess causal relationships between exposures and outcomes. MR studies can be straightforward; for example, genetic variants within or near the encoding locus that is associated with protein concentrations can help to assess their causal role in disease. However, a more complex relationship between the genetic variants and an exposure can make findings from MR more difficult to interpret. In this Review, we describe some of these challenges in interpreting MR analyses, including those from studies using genetic variants to assess causality of multiple traits (such as branched-chain amino acids and risk of diabetes mellitus); studies describing pleiotropic variants (for example, C-reactive protein and its contribution to coronary heart disease); and those investigating variants that disrupt normal function of an exposure (for example, HDL cholesterol or IL-6 and coronary heart disease). Furthermore, MR studies on variants that encode enzymes responsible for the metabolism of an exposure (such as alcohol) are discussed, in addition to those assessing the effects of variants on time-dependent exposures (extracellular superoxide dismutase), cumulative exposures (LDL cholesterol), and overlapping exposures (triglycerides and non-HDL cholesterol). We elaborate on the molecular features of each relationship, and provide explanations for the likely causal associations. In doing so, we hope to contribute towards more reliable evaluations of MR findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
又得起名了完成签到,获得积分10
刚刚
orixero应助bigxianyu采纳,获得10
1秒前
liu完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
梧桐雨210发布了新的文献求助10
2秒前
2秒前
3秒前
星辰大海应助scifff采纳,获得10
3秒前
Backto1998发布了新的文献求助20
3秒前
3秒前
钦钦完成签到 ,获得积分10
3秒前
4秒前
kkkkkk8完成签到,获得积分10
4秒前
4秒前
亥姆霍兹发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
shuangcheng发布了新的文献求助20
5秒前
fff发布了新的文献求助10
6秒前
小摩托完成签到,获得积分10
6秒前
angelsknight发布了新的文献求助30
6秒前
8秒前
学医的小胖子完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
AA发布了新的文献求助10
9秒前
10秒前
pphhhhaannn完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助20
11秒前
搜集达人应助明亮无颜采纳,获得30
11秒前
12秒前
希望天下0贩的0应助cy采纳,获得10
12秒前
海狗发布了新的文献求助10
12秒前
wbj0722完成签到,获得积分10
13秒前
会飞的鱼完成签到,获得积分10
13秒前
pphhhhaannn发布了新的文献求助10
13秒前
bigxianyu发布了新的文献求助10
14秒前
领导范儿应助有一颗卤蛋采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771