🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新

Organic Donor–Acceptor Complexes as Novel Organic Semiconductors

有机半导体 堆积 有机太阳能电池 纳米技术 接受者 有机电子学 材料科学 半导体 晶体管 化学 聚合物 光电子学 有机化学 电压 电气工程 物理 工程类 复合材料 凝聚态物理
作者
Jing Zhang,Wei Xu,Ping Sheng,Guangyao Zhao,Daoben Zhu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (7): 1654-1662 被引量:353
标识
DOI:10.1021/acs.accounts.7b00124
摘要

ConspectusOrganic donor–acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges.Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm2 V–1 s–1), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure–property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure–property relationships and in turn help us design high-performance semiconductors based on DA complexes.In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure–property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月24日)
1#810 nozero
322
4880
2#791 科研小民工
286
5050
3#742 shinysparrow
331
4110
4#470 SYLH
235
2350
5#329 小透明
148
1810
6#144 浦肯野
61
830
7#135 xjcy
67
680
8#134 子车茗
65
690
9#134 Leon
66
680
10#133 36456657
65
680
11#106 whisper
53
530
12#104 火星上的菲鹰
52
520
13#98 zho
49
490
14#98 毛豆
49
490
15#95 昏睡的蟠桃
39
560
16#93 curtisness
46
470
17#78 哎嘿
38
400
18#74 劲秉
28
460
19#67 史小菜
32
350
20#67 tuanheqi
9
580
21#66 muxiangrong
30
360
22#64 hbsand
31
330
23#64 Catalina_S
32
320
24#54 敬老院1号
4
500
25#54 Leif
27
270
26#52 研友_Z30GJ8
25
270
27#52 S77
26
260
28#52 实验好难
26
260
29#50 suibianba
24
260
30#48 QOP
24
240
31#46 木头马尾
23
230
32#44 Auston_zhong
22
220
第1名:50元;第2名:30元;第3名:10元

总排名
1#810 nozero
322
4880
2#791 科研小民工
286
5050
3#742 shinysparrow
331
4110
4#470 SYLH
235
2350
5#329 小透明
148
1810
6#144 浦肯野
61
830
7#135 xjcy
67
680
8#134 子车茗
65
690
9#134 Leon
66
680
10#133 36456657
65
680
11#106 whisper
53
530
12#104 火星上的菲鹰
52
520
13#98 zho
49
490
14#98 毛豆
49
490
15#95 昏睡的蟠桃
39
560
16#93 curtisness
46
470
17#78 哎嘿
38
400
18#74 劲秉
28
460
19#67 史小菜
32
350
20#67 tuanheqi
9
580
21#66 muxiangrong
30
360
22#64 hbsand
31
330
23#64 Catalina_S
32
320
24#54 敬老院1号
4
500
25#54 Leif
27
270
26#52 研友_Z30GJ8
25
270
27#52 S77
26
260
28#52 实验好难
26
260
29#50 suibianba
24
260
30#48 QOP
24
240
31#46 木头马尾
23
230
32#44 Auston_zhong
22
220
33#42 无敌最俊朗
18
240
34#42 云瑾
21
210
35#39 贰鸟
19
200
36#38 xunxunmimi
19
190
37#38 加菲丰丰
19
190
38#36 酷炫的毛巾
18
180
39#36 斯文的寒风
18
180
40#36 紫色水晶之恋
18
180
41#35 cdercder
13
220
42#34 Lars汉堡
17
170
43#34 喜悦成威
17
170
44#32 CAOHOU
16
160
45#32 Yancy
16
160
46#32 良辰
16
160
47#32 开朗的手套
16
160
48#30 wadaxiwa
15
150
49#30 剑指东方是为谁
15
150
50#30 怼怼
15
150
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
1秒前
尛瞐慶成发布了新的文献求助10
1秒前
余闻问发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
希望天下0贩的0应助Peng采纳,获得10
4秒前
疯狂的灵发布了新的文献求助10
4秒前
5秒前
科研通AI5应助枵蕾采纳,获得10
5秒前
xy发布了新的文献求助10
6秒前
搜集达人应助迷路枫采纳,获得10
6秒前
7秒前
科研通AI5应助迟百彤采纳,获得10
7秒前
7秒前
8秒前
归海平灵发布了新的文献求助10
8秒前
LOT发布了新的文献求助30
9秒前
TJTerrence完成签到,获得积分10
9秒前
科研通AI5应助SHL采纳,获得10
11秒前
SciGPT应助开放灭绝采纳,获得10
12秒前
缺水哥发布了新的文献求助10
12秒前
13秒前
小马甲应助林少玮采纳,获得10
13秒前
今后应助斯文黎云采纳,获得10
13秒前
科研小民工应助BlackP采纳,获得30
13秒前
zzz完成签到 ,获得积分10
14秒前
饱满鞅发布了新的文献求助10
15秒前
852应助一坤采纳,获得10
15秒前
丘比特应助帆高采纳,获得10
16秒前
何启志完成签到,获得积分10
16秒前
17秒前
17秒前
加减法号发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
20秒前
kiki发布了新的文献求助10
20秒前
古少完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
SSIS Performance Screening Guide - Secondary (10 pk) (Social Skills Improvement System) 2000
Continuum Thermodynamics and Material Modelling 2000
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3612362
求助须知:如何正确求助?哪些是违规求助? 3183855
关于积分的说明 9603736
捐赠科研通 2890108
什么是DOI,文献DOI怎么找? 1585438
邀请新用户注册赠送积分活动 745717
科研通“疑难数据库(出版商)”最低求助积分说明 727875