清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Organic Donor–Acceptor Complexes as Novel Organic Semiconductors

有机半导体 堆积 有机太阳能电池 纳米技术 接受者 有机电子学 材料科学 半导体 晶体管 化学 聚合物 光电子学 有机化学 电压 电气工程 物理 工程类 复合材料 凝聚态物理
作者
Jing Zhang,Wei Xu,Ping Sheng,Guangyao Zhao,Daoben Zhu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (7): 1654-1662 被引量:353
标识
DOI:10.1021/acs.accounts.7b00124
摘要

ConspectusOrganic donor–acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges.Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm2 V–1 s–1), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure–property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure–property relationships and in turn help us design high-performance semiconductors based on DA complexes.In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure–property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小梦发布了新的文献求助20
7秒前
小马甲应助小梦采纳,获得10
26秒前
大胆的碧菡完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助150
35秒前
1分钟前
不晓天发布了新的文献求助10
1分钟前
香蕉觅云应助bxb采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小梦发布了新的文献求助10
1分钟前
yy发布了新的文献求助10
1分钟前
bxb发布了新的文献求助10
1分钟前
bxb完成签到,获得积分10
1分钟前
轻松小张完成签到,获得积分0
1分钟前
kean1943完成签到,获得积分10
1分钟前
欢喜的跳跳糖完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
张小陈完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助小梦采纳,获得10
2分钟前
zzhui完成签到,获得积分10
2分钟前
2分钟前
安琪琪完成签到 ,获得积分10
2分钟前
2分钟前
拾石子完成签到 ,获得积分10
2分钟前
2分钟前
closer完成签到 ,获得积分10
2分钟前
Raul完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
naczx完成签到,获得积分0
3分钟前
ww完成签到,获得积分10
3分钟前
3分钟前
xiaozou55完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
嘟嘟嘟嘟完成签到 ,获得积分10
4分钟前
捉迷藏完成签到,获得积分0
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957082
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111267
捐赠科研通 3234174
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264