AlOx surface passivation of black silicon by spatial ALD: Stability under light soaking and damp heat exposure

钝化 材料科学 黑硅 图层(电子) 晶体硅 降级(电信) 光电子学 复合材料 电子工程 工程类
作者
Ismo T. S. Heikkinen,George Koutsourakis,Sauli Virtanen,Marko Yli‐Koski,Sebastian Wood,Ville Vähänissi,Emma Salmi,Fernando A. Castro,Hele Savin
出处
期刊:Journal of vacuum science & technology [American Vacuum Society]
卷期号:38 (2) 被引量:6
标识
DOI:10.1116/1.5133896
摘要

Scientific breakthroughs in silicon surface passivation have enabled commercial high-efficiency photovoltaic devices making use of the black silicon nanostructure. In this study, the authors report on factors that influence the passivation stability of black silicon realized with industrially viable spatial atomic layer deposited (SALD) aluminum oxide (AlOx) under damp heat exposure and light soaking. Damp heat exposure conditions are 85 °C and 85% relative humidity, and light soaking is performed with 0.6 sun illumination at 75 °C. It is demonstrated that reasonably thick (20 nm) passivation films are required for both black and planar surfaces in order to provide stable surface passivation over a period of 1000 h under both testing conditions. Both surface textures degrade at similar rates with 5 and 2 nm thick films. The degradation mechanism under damp heat exposure is found to be different from that in light soaking. During damp heat exposure, the fixed charge density of AlOx is reduced, which decreases the amount of field-effect passivation. Degradation under light soaking, on the other hand, is likely to be related to interface defects between silicon and the passivating film. Finally, a thin chemically grown SiOx layer at the interface between the AlOx film and the silicon surface is shown to significantly increase the passivation stability under both light soaking and damp heat exposure. The results of this study provide valuable insights into surface passivation degradation mechanisms on nanostructured silicon surfaces and pave the way for the industrial production of highly stable black silicon devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
磊2024完成签到,获得积分10
刚刚
丘比特应助猪猪hero采纳,获得10
刚刚
1秒前
金汐完成签到,获得积分10
1秒前
1秒前
jeery发布了新的文献求助10
1秒前
林献完成签到,获得积分20
1秒前
美好行天发布了新的文献求助10
1秒前
_蝴蝶小姐发布了新的文献求助30
2秒前
liu123456完成签到,获得积分10
2秒前
Once发布了新的文献求助10
2秒前
Tengami应助幽默的依瑶采纳,获得10
2秒前
3秒前
CH完成签到,获得积分10
3秒前
逸风望完成签到,获得积分10
3秒前
3秒前
传奇3应助居政采纳,获得10
3秒前
Nico完成签到 ,获得积分10
3秒前
传奇3应助科研小笨猪采纳,获得10
3秒前
3秒前
Ava应助小也同学采纳,获得10
3秒前
yanxi完成签到 ,获得积分10
4秒前
刺猬hedgehog完成签到,获得积分10
4秒前
李爱国应助Fall采纳,获得10
4秒前
欣慰妙柏发布了新的文献求助10
4秒前
lq8996完成签到 ,获得积分10
4秒前
whatever应助小田采纳,获得20
4秒前
mhr完成签到,获得积分10
4秒前
5秒前
5秒前
壮观小懒虫完成签到,获得积分10
5秒前
an关注了科研通微信公众号
6秒前
wyx发布了新的文献求助10
6秒前
集力申完成签到,获得积分10
6秒前
6秒前
7秒前
基围虾完成签到,获得积分10
7秒前
纯真凌晴完成签到,获得积分10
7秒前
菲子笑发布了新的文献求助10
7秒前
JamesPei应助浅沫juanjuan采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188