AlOx surface passivation of black silicon by spatial ALD: Stability under light soaking and damp heat exposure

钝化 材料科学 黑硅 图层(电子) 晶体硅 降级(电信) 光电子学 复合材料 电子工程 工程类
作者
Ismo T. S. Heikkinen,George Koutsourakis,Sauli Virtanen,Marko Yli‐Koski,Sebastian Wood,Ville Vähänissi,Emma Salmi,Fernando A. Castro,Hele Savin
出处
期刊:Journal of vacuum science & technology [American Institute of Physics]
卷期号:38 (2) 被引量:6
标识
DOI:10.1116/1.5133896
摘要

Scientific breakthroughs in silicon surface passivation have enabled commercial high-efficiency photovoltaic devices making use of the black silicon nanostructure. In this study, the authors report on factors that influence the passivation stability of black silicon realized with industrially viable spatial atomic layer deposited (SALD) aluminum oxide (AlOx) under damp heat exposure and light soaking. Damp heat exposure conditions are 85 °C and 85% relative humidity, and light soaking is performed with 0.6 sun illumination at 75 °C. It is demonstrated that reasonably thick (20 nm) passivation films are required for both black and planar surfaces in order to provide stable surface passivation over a period of 1000 h under both testing conditions. Both surface textures degrade at similar rates with 5 and 2 nm thick films. The degradation mechanism under damp heat exposure is found to be different from that in light soaking. During damp heat exposure, the fixed charge density of AlOx is reduced, which decreases the amount of field-effect passivation. Degradation under light soaking, on the other hand, is likely to be related to interface defects between silicon and the passivating film. Finally, a thin chemically grown SiOx layer at the interface between the AlOx film and the silicon surface is shown to significantly increase the passivation stability under both light soaking and damp heat exposure. The results of this study provide valuable insights into surface passivation degradation mechanisms on nanostructured silicon surfaces and pave the way for the industrial production of highly stable black silicon devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助wwww采纳,获得10
1秒前
Jasper应助公西傲蕾采纳,获得10
3秒前
刘慧鑫完成签到,获得积分10
4秒前
4秒前
鳄鱼蛋完成签到,获得积分10
4秒前
5秒前
6秒前
~~完成签到,获得积分10
6秒前
7秒前
7秒前
汉堡包应助冷静铃铛采纳,获得10
7秒前
生产队的建设者完成签到,获得积分20
7秒前
副掌门发布了新的文献求助10
8秒前
8秒前
完美世界应助guojing采纳,获得10
8秒前
Parsifal发布了新的文献求助10
9秒前
hhc完成签到,获得积分10
9秒前
奋斗梦旋完成签到,获得积分10
9秒前
10秒前
yyy完成签到,获得积分10
11秒前
bxw完成签到 ,获得积分10
11秒前
wwww发布了新的文献求助10
12秒前
Orange应助威武从寒采纳,获得10
12秒前
静水流深发布了新的文献求助10
13秒前
十一一发布了新的文献求助10
14秒前
unowhoiam完成签到 ,获得积分10
14秒前
兔子先生完成签到 ,获得积分10
15秒前
hudu应助尊敬的芷卉采纳,获得10
15秒前
wangtinglk完成签到,获得积分10
15秒前
大个应助副掌门采纳,获得10
16秒前
16秒前
科研通AI2S应助mufcyang采纳,获得10
17秒前
wwww完成签到,获得积分10
17秒前
17秒前
北光完成签到,获得积分20
17秒前
17秒前
mumu发布了新的文献求助100
18秒前
19秒前
静水流深完成签到,获得积分10
20秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760254
求助须知:如何正确求助?哪些是违规求助? 3303501
关于积分的说明 10126963
捐赠科研通 3017831
什么是DOI,文献DOI怎么找? 1657232
邀请新用户注册赠送积分活动 791239
科研通“疑难数据库(出版商)”最低求助积分说明 754188