Multimodal Data Analysis of Alzheimer's Disease Based on Clustering Evolutionary Random Forest

随机森林 计算机科学 聚类分析 人工智能 层次聚类 特征选择 决策树 特征(语言学) 数据挖掘 机器学习 模式识别(心理学) 语言学 哲学
作者
Xia-an Bi,Xi Hu,Hao Wu,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 2973-2983 被引量:73
标识
DOI:10.1109/jbhi.2020.2973324
摘要

Alzheimer's disease (AD) has become a severe medical challenge. Advances in technologies produced high-dimensional data of different modalities including functional magnetic resonance imaging (fMRI) and single nucleotide polymorphism (SNP). Understanding the complex association patterns among these heterogeneous and complementary data is of benefit to the diagnosis and prevention of AD. In this paper, we apply the appropriate correlation analysis method to detect the relationships between brain regions and genes, and propose “brain region-gene pairs” as the multimodal features of the sample. In addition, we put forward a novel data analysis method from technology aspect, cluster evolutionary random forest (CERF), which is suitable for “brain region-gene pairs”. The idea of clustering evolution is introduced to improve the generalization performance of random forest which is constructed by randomly selecting samples and sample features. Through hierarchical clustering of decision trees in random forest, the decision trees with higher similarity are clustered into one class, and the decision trees with the best performance are retained to enhance the diversity between decision trees. Furthermore, based on CERF, we integrate feature construction, feature selection and sample classification to find the optimal combination of different methods, and design a comprehensive diagnostic framework for AD. The framework is validated by the samples with both fMRI and SNP data from ADNI. The results show that we can effectively identify AD patients and discover some brain regions and genes associated with AD significantly based on this framework. These findings are conducive to the clinical treatment and prevention of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内含子发布了新的文献求助10
刚刚
shingai发布了新的文献求助10
1秒前
nlqwan完成签到,获得积分10
1秒前
1秒前
敏感时光完成签到,获得积分10
2秒前
劲秉应助过儿采纳,获得10
2秒前
qq722249发布了新的文献求助10
3秒前
3秒前
苗苗完成签到,获得积分10
3秒前
qutt完成签到 ,获得积分10
3秒前
西蓝花完成签到,获得积分20
3秒前
kidney发布了新的文献求助10
4秒前
陈年大苏打完成签到,获得积分10
4秒前
大个应助unique采纳,获得10
5秒前
5秒前
化合物来完成签到,获得积分10
7秒前
7秒前
科研仔发布了新的文献求助10
8秒前
8秒前
9秒前
Lucas应助waa采纳,获得10
9秒前
劲秉应助伍迎海采纳,获得10
10秒前
不想看文献完成签到,获得积分10
10秒前
10秒前
嘎嘎发布了新的文献求助10
11秒前
11秒前
英俊的铭应助超级香之采纳,获得10
11秒前
13秒前
chloe发布了新的文献求助10
13秒前
钱钱钱完成签到,获得积分10
13秒前
wjh应助shingai采纳,获得10
13秒前
Thea发布了新的文献求助50
14秒前
qq722249完成签到,获得积分10
14秒前
whff完成签到,获得积分10
14秒前
kaki完成签到,获得积分10
15秒前
天天快乐应助超级小飞侠采纳,获得10
15秒前
bkagyin应助超级小飞侠采纳,获得10
15秒前
隐形曼青应助超级小飞侠采纳,获得10
15秒前
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459295
求助须知:如何正确求助?哪些是违规求助? 3053785
关于积分的说明 9038498
捐赠科研通 2743130
什么是DOI,文献DOI怎么找? 1504671
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664