Global guidance network for breast lesion segmentation in ultrasound images

分割 卷积神经网络 人工智能 计算机科学 深度学习 乳腺超声检查 计算机视觉 模式识别(心理学) 图像分割 特征(语言学) 双雷达 乳腺摄影术 乳腺癌 医学 癌症 哲学 内科学 语言学
作者
Cheng Xue,Lei Zhu,Huazhu Fu,Xiaowei Hu,Xiaomeng Li,Hai Zhang,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 101989-101989 被引量:126
标识
DOI:10.1016/j.media.2021.101989
摘要

Automatic breast lesion segmentation in ultrasound helps to diagnose breast cancer, which is one of the dreadful diseases that affect women globally. Segmenting breast regions accurately from ultrasound image is a challenging task due to the inherent speckle artifacts, blurry breast lesion boundaries, and inhomogeneous intensity distributions inside the breast lesion regions. Recently, convolutional neural networks (CNNs) have demonstrated remarkable results in medical image segmentation tasks. However, the convolutional operations in a CNN often focus on local regions, which suffer from limited capabilities in capturing long-range dependencies of the input ultrasound image, resulting in degraded breast lesion segmentation accuracy. In this paper, we develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection (BD) modules for boosting the breast ultrasound lesion segmentation. The GGB utilizes the multi-layer integrated feature map as a guidance information to learn the long-range non-local dependencies from both spatial and channel domains. The BD modules learn additional breast lesion boundary map to enhance the boundary quality of a segmentation result refinement. Experimental results on a public dataset and a collected dataset show that our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation. Moreover, we also show the application of our network on the ultrasound prostate segmentation, in which our method better identifies prostate regions than state-of-the-art networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哄哄发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
英俊的铭应助张文博采纳,获得30
1秒前
港岛妹妹应助BINBIN采纳,获得10
1秒前
研友_nEoEy8发布了新的文献求助30
1秒前
嗯哼应助Binggui采纳,获得10
3秒前
xzza发布了新的文献求助10
3秒前
慕青应助Chemokin采纳,获得10
5秒前
KD发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助炙热往事采纳,获得10
7秒前
港岛妹妹应助gulsima采纳,获得10
8秒前
科研人发布了新的文献求助10
8秒前
11秒前
123发布了新的文献求助10
11秒前
12秒前
zhao发布了新的文献求助200
13秒前
13秒前
zqq123完成签到,获得积分10
14秒前
选课发布了新的文献求助50
14秒前
科目三应助贪玩手链采纳,获得10
16秒前
华仔应助srf0602.采纳,获得10
16秒前
小蘑菇应助坦率冰旋采纳,获得10
16秒前
蚂蚁Y嘿应助闵SUGA采纳,获得10
17秒前
我只是个丙酮酸完成签到,获得积分10
18秒前
18秒前
炙热往事发布了新的文献求助10
22秒前
23秒前
顺利糜完成签到,获得积分10
23秒前
123完成签到,获得积分10
24秒前
25秒前
畅快的弼完成签到 ,获得积分10
25秒前
章鱼哥想毕业完成签到 ,获得积分10
26秒前
xdx发布了新的文献求助10
26秒前
27秒前
Akim应助江月林风采纳,获得10
27秒前
NSS完成签到,获得积分10
27秒前
dalong完成签到,获得积分10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243862
求助须知:如何正确求助?哪些是违规求助? 2887702
关于积分的说明 8249629
捐赠科研通 2556367
什么是DOI,文献DOI怎么找? 1384486
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625809