分割
卷积神经网络
人工智能
计算机科学
深度学习
乳腺超声检查
计算机视觉
模式识别(心理学)
图像分割
特征(语言学)
双雷达
乳腺摄影术
乳腺癌
医学
癌症
哲学
内科学
语言学
作者
Cheng Xue,Lei Zhu,Huazhu Fu,Xiaowei Hu,Xiaomeng Li,Hai Zhang,Pheng‐Ann Heng
标识
DOI:10.1016/j.media.2021.101989
摘要
Automatic breast lesion segmentation in ultrasound helps to diagnose breast cancer, which is one of the dreadful diseases that affect women globally. Segmenting breast regions accurately from ultrasound image is a challenging task due to the inherent speckle artifacts, blurry breast lesion boundaries, and inhomogeneous intensity distributions inside the breast lesion regions. Recently, convolutional neural networks (CNNs) have demonstrated remarkable results in medical image segmentation tasks. However, the convolutional operations in a CNN often focus on local regions, which suffer from limited capabilities in capturing long-range dependencies of the input ultrasound image, resulting in degraded breast lesion segmentation accuracy. In this paper, we develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection (BD) modules for boosting the breast ultrasound lesion segmentation. The GGB utilizes the multi-layer integrated feature map as a guidance information to learn the long-range non-local dependencies from both spatial and channel domains. The BD modules learn additional breast lesion boundary map to enhance the boundary quality of a segmentation result refinement. Experimental results on a public dataset and a collected dataset show that our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation. Moreover, we also show the application of our network on the ultrasound prostate segmentation, in which our method better identifies prostate regions than state-of-the-art networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI