RF-DCM: Multi-Granularity Deep Convolutional Model Based on Feature Recalibration and Fusion for Driver Fatigue Detection

粒度 计算机科学 人工智能 特征(语言学) 特征提取 保险丝(电气) 卷积神经网络 相似性(几何) 模式识别(心理学) 面子(社会学概念) 融合 计算机视觉 工程类 图像(数学) 社会学 哲学 电气工程 操作系统 语言学 社会科学
作者
Rui Huang,Yan Wang,Zijian Li,Zeyu Lei,Yan Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 630-640 被引量:28
标识
DOI:10.1109/tits.2020.3017513
摘要

Fatigue driving is one of the main causes of traffic accidents. For real-world driver fatigue detection, the large pose deformations exhibited by the captured global face significantly increase the difficulty of extracting effective features. Furthermore, previous fatigue detection methods have not achieved desired results in distinguishing actions with similar appearance, such as yawning and speaking. In this article, we propose a multi-granularity Deep Convolutional Model based on feature Recalibration and Fusion for driver fatigue detection (RF-DCM). Our deep model leverages cues from partial faces to alleviate the pose variations and obtains robust feature representations from both the global face and different local parts. The core innovative techniques are as follows: A multi-granularity extraction sub-network extracts more efficient multi-granularity features while compressing the parameters of the network. In order to match multi-granularity features, a feature rectification sub-network and a feature fusion sub-network are designed to adaptively recalibrate and fuse the multi-granularity features. A long short term memory network is used to explore the relationship among sequence frames to distinguish actions with similar appearances. Extensive experimental results on the public drowsy driver dataset from NTHU Driver Drowsy competition demonstrate significant performance improvements of our model over all published state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习发布了新的文献求助10
刚刚
刚刚
大胆秋灵发布了新的文献求助10
1秒前
1秒前
搜集达人应助李楠采纳,获得10
1秒前
瘦瘦菠萝发布了新的文献求助10
3秒前
123发布了新的文献求助30
4秒前
1111完成签到,获得积分10
4秒前
坚强的茗茗完成签到,获得积分10
4秒前
5秒前
郭志倩完成签到 ,获得积分10
5秒前
赘婿应助TCA循环采纳,获得10
6秒前
wanci应助笑语盈盈采纳,获得10
6秒前
6秒前
搜集达人应助zlb采纳,获得10
6秒前
嗯嗯完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
demian完成签到,获得积分20
7秒前
JJun完成签到,获得积分10
8秒前
9秒前
善良耳机完成签到,获得积分10
11秒前
11秒前
11秒前
丁牛青完成签到,获得积分10
12秒前
Knight发布了新的文献求助10
12秒前
12秒前
pluto发布了新的文献求助10
13秒前
打打应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
完美世界应助mariawang采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
zhang183clue应助科研通管家采纳,获得20
14秒前
大个应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049