RF-DCM: Multi-Granularity Deep Convolutional Model Based on Feature Recalibration and Fusion for Driver Fatigue Detection

粒度 计算机科学 人工智能 特征(语言学) 特征提取 保险丝(电气) 卷积神经网络 相似性(几何) 模式识别(心理学) 面子(社会学概念) 融合 计算机视觉 工程类 图像(数学) 社会学 哲学 电气工程 操作系统 语言学 社会科学
作者
Rui Huang,Yan Wang,Zijian Li,Zeyu Lei,Yan Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 630-640 被引量:28
标识
DOI:10.1109/tits.2020.3017513
摘要

Fatigue driving is one of the main causes of traffic accidents. For real-world driver fatigue detection, the large pose deformations exhibited by the captured global face significantly increase the difficulty of extracting effective features. Furthermore, previous fatigue detection methods have not achieved desired results in distinguishing actions with similar appearance, such as yawning and speaking. In this article, we propose a multi-granularity Deep Convolutional Model based on feature Recalibration and Fusion for driver fatigue detection (RF-DCM). Our deep model leverages cues from partial faces to alleviate the pose variations and obtains robust feature representations from both the global face and different local parts. The core innovative techniques are as follows: A multi-granularity extraction sub-network extracts more efficient multi-granularity features while compressing the parameters of the network. In order to match multi-granularity features, a feature rectification sub-network and a feature fusion sub-network are designed to adaptively recalibrate and fuse the multi-granularity features. A long short term memory network is used to explore the relationship among sequence frames to distinguish actions with similar appearances. Extensive experimental results on the public drowsy driver dataset from NTHU Driver Drowsy competition demonstrate significant performance improvements of our model over all published state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪白涵山完成签到,获得积分20
1秒前
liao完成签到 ,获得积分10
1秒前
hu970发布了新的文献求助30
1秒前
科研小白发布了新的文献求助20
2秒前
SciGPT应助白小白采纳,获得10
2秒前
shuxi完成签到,获得积分10
3秒前
liuwei发布了新的文献求助10
3秒前
yxf完成签到,获得积分20
3秒前
4秒前
十一完成签到,获得积分10
4秒前
4秒前
穆萝完成签到,获得积分10
4秒前
Jenny应助Eva采纳,获得10
4秒前
bkagyin应助17808352679采纳,获得10
4秒前
俭朴夜雪发布了新的文献求助10
5秒前
5秒前
林上草应助123采纳,获得10
5秒前
科目三应助AoiNG采纳,获得10
5秒前
6秒前
orixero应助雪白涵山采纳,获得20
6秒前
123发布了新的文献求助10
7秒前
ajing完成签到,获得积分10
7秒前
537完成签到,获得积分10
7秒前
7秒前
8秒前
清醒的ZY完成签到,获得积分10
8秒前
yxf发布了新的文献求助10
9秒前
大个应助叫滚滚采纳,获得10
9秒前
9秒前
Rui发布了新的文献求助10
10秒前
10秒前
China发布了新的文献求助10
10秒前
10秒前
ryze完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762