A motor-imagery channel-selection method based on SVM-CCA-CS

运动表象 支持向量机 脑电图 计算机科学 模式识别(心理学) 频道(广播) 人工智能 脑-机接口 集合(抽象数据类型) 特征选择 选择(遗传算法) 语音识别 心理学 神经科学 电信 程序设计语言
作者
Qisong Wang,Tianao Cao,Dan Liu,Meiyan Zhang,Jingyang Lu,Ou Bai,Jinwei Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (3): 035701-035701 被引量:15
标识
DOI:10.1088/1361-6501/abc205
摘要

Abstract In electroencephalography, multi-channel electroencephalogram (EEG) signals are usually utilized to improve classification accuracy. However, a large set of EEG channels increases the computational complexity, reduces the real-time performance and causes wearability difficulties. Channel selection methods have been widely investigated to reduce the number of channels with an acceptable loss of accuracy for EEG-based motor-imagery recognition. In this paper, we present a novel algorithm, called Support Vector Machine-Canonical Correlation Analysis-Channel Selection (SVM-CCA-CS). First, the energy features of the wavelet packet subnodes of the motor-imagery EEG signals are extracted. Then the weights of feature groups are calculated as initial channel weights, based on the CCA algorithm. The initial channel weights are further adjusted, according to the contribution of each channel to the classification accuracy via SVM, and the top channels with larger weights are eventually selected. The results show that the average accuracy of all subjects can reach 80.03% by using the first 30 channels with the largest weights from among the total of 118 channels. For the right hand and foot motor-imagery tasks, the generally applicable optimal channels are mostly located in the left hemisphere. Our generally applicable channel observation of the whole brain cortex suggests contralateral control correspondence: for unilateral motor imagery, the optimal channels are concentrated in the contralateral hemisphere. This is consistent with the contralateral control of the body by the human brain: the majority of the human motor and sensory fibers tend to control the contralateral limbs and pass through the midline of the body. Our proposed method provides optimal acquisition and analysis of the positions of EEG signals in specific motor-imagery tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多吃青菜完成签到,获得积分10
1秒前
天天呼的海角完成签到,获得积分10
1秒前
77完成签到 ,获得积分10
1秒前
1秒前
汪汪完成签到,获得积分10
2秒前
safire完成签到,获得积分10
2秒前
2秒前
大虫子完成签到,获得积分10
3秒前
ljz910005完成签到,获得积分10
3秒前
Hossiu发布了新的文献求助10
3秒前
马上动起来完成签到,获得积分10
4秒前
4秒前
小鬼完成签到,获得积分10
4秒前
SYLH应助符雁采纳,获得10
4秒前
SGQT完成签到,获得积分10
4秒前
笑点低战斗机完成签到,获得积分10
4秒前
琉璃完成签到 ,获得积分10
5秒前
5秒前
Ae关注了科研通微信公众号
5秒前
千逐完成签到,获得积分10
6秒前
酷酷含桃完成签到,获得积分10
6秒前
爆米花应助彻底的采纳,获得10
6秒前
Cu_wx完成签到,获得积分10
6秒前
6秒前
小白完成签到,获得积分10
6秒前
烤鸭本鸭完成签到,获得积分10
7秒前
yolo完成签到,获得积分10
7秒前
7秒前
脚踏实滴完成签到 ,获得积分10
8秒前
Mannone完成签到,获得积分10
8秒前
仂尤发布了新的文献求助10
8秒前
Giinjju发布了新的文献求助10
9秒前
9秒前
狂野世立完成签到,获得积分10
9秒前
雪凝清霜完成签到,获得积分10
9秒前
科研通AI2S应助爽o采纳,获得10
9秒前
9秒前
想水SCI完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968637
求助须知:如何正确求助?哪些是违规求助? 3513552
关于积分的说明 11168493
捐赠科研通 3248935
什么是DOI,文献DOI怎么找? 1794554
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804691