A motor-imagery channel-selection method based on SVM-CCA-CS

运动表象 支持向量机 脑电图 计算机科学 模式识别(心理学) 频道(广播) 人工智能 脑-机接口 集合(抽象数据类型) 特征选择 选择(遗传算法) 语音识别 心理学 神经科学 电信 程序设计语言
作者
Qisong Wang,Tianao Cao,Dan Liu,Meiyan Zhang,Jingyang Lu,Ou Bai,Jinwei Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (3): 035701-035701 被引量:15
标识
DOI:10.1088/1361-6501/abc205
摘要

Abstract In electroencephalography, multi-channel electroencephalogram (EEG) signals are usually utilized to improve classification accuracy. However, a large set of EEG channels increases the computational complexity, reduces the real-time performance and causes wearability difficulties. Channel selection methods have been widely investigated to reduce the number of channels with an acceptable loss of accuracy for EEG-based motor-imagery recognition. In this paper, we present a novel algorithm, called Support Vector Machine-Canonical Correlation Analysis-Channel Selection (SVM-CCA-CS). First, the energy features of the wavelet packet subnodes of the motor-imagery EEG signals are extracted. Then the weights of feature groups are calculated as initial channel weights, based on the CCA algorithm. The initial channel weights are further adjusted, according to the contribution of each channel to the classification accuracy via SVM, and the top channels with larger weights are eventually selected. The results show that the average accuracy of all subjects can reach 80.03% by using the first 30 channels with the largest weights from among the total of 118 channels. For the right hand and foot motor-imagery tasks, the generally applicable optimal channels are mostly located in the left hemisphere. Our generally applicable channel observation of the whole brain cortex suggests contralateral control correspondence: for unilateral motor imagery, the optimal channels are concentrated in the contralateral hemisphere. This is consistent with the contralateral control of the body by the human brain: the majority of the human motor and sensory fibers tend to control the contralateral limbs and pass through the midline of the body. Our proposed method provides optimal acquisition and analysis of the positions of EEG signals in specific motor-imagery tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345发布了新的文献求助10
刚刚
1秒前
毛头发布了新的文献求助10
1秒前
1秒前
小鱼女侠发布了新的文献求助10
1秒前
2秒前
FX完成签到,获得积分10
2秒前
万能图书馆应助焱焱采纳,获得10
3秒前
4秒前
李爱国应助奇奇采纳,获得10
4秒前
6666发布了新的文献求助10
5秒前
科研通AI6应助罐罐采纳,获得30
5秒前
Jlu完成签到,获得积分10
5秒前
风中的逍遥完成签到,获得积分10
5秒前
Armand完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
yy发布了新的文献求助10
7秒前
cloudy关注了科研通微信公众号
7秒前
7秒前
7秒前
8秒前
dew应助zzzzzzzzzj采纳,获得10
8秒前
8秒前
9秒前
鲁滨逊发布了新的文献求助10
10秒前
10秒前
10秒前
RY发布了新的文献求助10
11秒前
11秒前
科研通AI6应助张萌采纳,获得10
11秒前
小李博士发布了新的文献求助10
11秒前
zgdzhj发布了新的文献求助10
12秒前
星星发布了新的文献求助10
12秒前
ZZRR发布了新的文献求助10
12秒前
12秒前
yayaya完成签到,获得积分10
12秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416