A motor-imagery channel-selection method based on SVM-CCA-CS

运动表象 支持向量机 脑电图 计算机科学 模式识别(心理学) 频道(广播) 人工智能 脑-机接口 集合(抽象数据类型) 特征选择 选择(遗传算法) 语音识别 心理学 神经科学 电信 程序设计语言
作者
Qisong Wang,Tianao Cao,Dan Liu,Meiyan Zhang,Jingyang Lu,Ou Bai,Jinwei Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (3): 035701-035701 被引量:15
标识
DOI:10.1088/1361-6501/abc205
摘要

Abstract In electroencephalography, multi-channel electroencephalogram (EEG) signals are usually utilized to improve classification accuracy. However, a large set of EEG channels increases the computational complexity, reduces the real-time performance and causes wearability difficulties. Channel selection methods have been widely investigated to reduce the number of channels with an acceptable loss of accuracy for EEG-based motor-imagery recognition. In this paper, we present a novel algorithm, called Support Vector Machine-Canonical Correlation Analysis-Channel Selection (SVM-CCA-CS). First, the energy features of the wavelet packet subnodes of the motor-imagery EEG signals are extracted. Then the weights of feature groups are calculated as initial channel weights, based on the CCA algorithm. The initial channel weights are further adjusted, according to the contribution of each channel to the classification accuracy via SVM, and the top channels with larger weights are eventually selected. The results show that the average accuracy of all subjects can reach 80.03% by using the first 30 channels with the largest weights from among the total of 118 channels. For the right hand and foot motor-imagery tasks, the generally applicable optimal channels are mostly located in the left hemisphere. Our generally applicable channel observation of the whole brain cortex suggests contralateral control correspondence: for unilateral motor imagery, the optimal channels are concentrated in the contralateral hemisphere. This is consistent with the contralateral control of the body by the human brain: the majority of the human motor and sensory fibers tend to control the contralateral limbs and pass through the midline of the body. Our proposed method provides optimal acquisition and analysis of the positions of EEG signals in specific motor-imagery tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangjunqi发布了新的文献求助10
刚刚
寇博翔发布了新的文献求助10
1秒前
彼得潘同学完成签到,获得积分10
1秒前
1秒前
丘比特应助等等采纳,获得30
2秒前
2秒前
小张完成签到,获得积分10
2秒前
3秒前
JIAca发布了新的文献求助10
3秒前
4秒前
笑点低涵柳完成签到,获得积分10
4秒前
4秒前
5秒前
安文发布了新的文献求助10
5秒前
6秒前
Sanely完成签到,获得积分10
6秒前
小脚丫发布了新的文献求助10
6秒前
7秒前
老福贵儿应助努力采纳,获得10
7秒前
dengy发布了新的文献求助10
8秒前
8秒前
小树和太阳完成签到,获得积分10
9秒前
李健的小迷弟应助JIAca采纳,获得10
9秒前
诸坤发布了新的文献求助10
9秒前
morning发布了新的文献求助10
10秒前
小蘑菇应助安静采纳,获得10
10秒前
Myownway发布了新的文献求助30
11秒前
轻松煎饼完成签到,获得积分10
11秒前
11秒前
JoySue完成签到,获得积分20
11秒前
yangjunqi完成签到,获得积分10
12秒前
12秒前
Condor完成签到,获得积分10
12秒前
阳娅丽应助等等采纳,获得10
12秒前
12秒前
13秒前
真陈发布了新的文献求助10
13秒前
13秒前
fly驳回了李爱国应助
14秒前
科研通AI6应助苏莉婷采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352249
求助须知:如何正确求助?哪些是违规求助? 4485120
关于积分的说明 13962087
捐赠科研通 4385062
什么是DOI,文献DOI怎么找? 2409251
邀请新用户注册赠送积分活动 1401706
关于科研通互助平台的介绍 1375258