A motor-imagery channel-selection method based on SVM-CCA-CS

运动表象 支持向量机 脑电图 计算机科学 模式识别(心理学) 频道(广播) 人工智能 脑-机接口 集合(抽象数据类型) 特征选择 选择(遗传算法) 语音识别 心理学 神经科学 电信 程序设计语言
作者
Qisong Wang,Tianao Cao,Dan Liu,Meiyan Zhang,Jingyang Lu,Ou Bai,Jinwei Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (3): 035701-035701 被引量:15
标识
DOI:10.1088/1361-6501/abc205
摘要

Abstract In electroencephalography, multi-channel electroencephalogram (EEG) signals are usually utilized to improve classification accuracy. However, a large set of EEG channels increases the computational complexity, reduces the real-time performance and causes wearability difficulties. Channel selection methods have been widely investigated to reduce the number of channels with an acceptable loss of accuracy for EEG-based motor-imagery recognition. In this paper, we present a novel algorithm, called Support Vector Machine-Canonical Correlation Analysis-Channel Selection (SVM-CCA-CS). First, the energy features of the wavelet packet subnodes of the motor-imagery EEG signals are extracted. Then the weights of feature groups are calculated as initial channel weights, based on the CCA algorithm. The initial channel weights are further adjusted, according to the contribution of each channel to the classification accuracy via SVM, and the top channels with larger weights are eventually selected. The results show that the average accuracy of all subjects can reach 80.03% by using the first 30 channels with the largest weights from among the total of 118 channels. For the right hand and foot motor-imagery tasks, the generally applicable optimal channels are mostly located in the left hemisphere. Our generally applicable channel observation of the whole brain cortex suggests contralateral control correspondence: for unilateral motor imagery, the optimal channels are concentrated in the contralateral hemisphere. This is consistent with the contralateral control of the body by the human brain: the majority of the human motor and sensory fibers tend to control the contralateral limbs and pass through the midline of the body. Our proposed method provides optimal acquisition and analysis of the positions of EEG signals in specific motor-imagery tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
馒头完成签到 ,获得积分10
1秒前
叮叮发布了新的文献求助10
1秒前
3秒前
33完成签到 ,获得积分10
4秒前
鱼猫发布了新的文献求助10
5秒前
西贝应助Xxsy采纳,获得10
5秒前
林夕完成签到 ,获得积分10
6秒前
拼搏的桐完成签到,获得积分10
6秒前
7秒前
cc完成签到 ,获得积分10
8秒前
不会回信息的猪完成签到,获得积分20
9秒前
ChengYonghui完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
bill完成签到,获得积分10
10秒前
孟龙威完成签到,获得积分10
11秒前
心理咨熊师完成签到,获得积分10
11秒前
微风打了烊完成签到 ,获得积分10
11秒前
JFP完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
CodeCraft应助biu采纳,获得10
14秒前
飞快的语蕊完成签到,获得积分10
15秒前
小程同学完成签到,获得积分10
16秒前
竹本完成签到 ,获得积分10
16秒前
Vanness发布了新的文献求助10
16秒前
pancake发布了新的文献求助30
17秒前
18秒前
18秒前
19秒前
浮游应助ZZZ采纳,获得10
19秒前
22秒前
22秒前
赘婿应助王小帅ok采纳,获得10
23秒前
久伴久爱完成签到 ,获得积分10
23秒前
林晨则静完成签到 ,获得积分10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337