A motor-imagery channel-selection method based on SVM-CCA-CS

运动表象 支持向量机 脑电图 计算机科学 模式识别(心理学) 频道(广播) 人工智能 脑-机接口 集合(抽象数据类型) 特征选择 选择(遗传算法) 语音识别 心理学 神经科学 电信 程序设计语言
作者
Qisong Wang,Tianao Cao,Dan Liu,Meiyan Zhang,Jingyang Lu,Ou Bai,Jinwei Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (3): 035701-035701 被引量:15
标识
DOI:10.1088/1361-6501/abc205
摘要

Abstract In electroencephalography, multi-channel electroencephalogram (EEG) signals are usually utilized to improve classification accuracy. However, a large set of EEG channels increases the computational complexity, reduces the real-time performance and causes wearability difficulties. Channel selection methods have been widely investigated to reduce the number of channels with an acceptable loss of accuracy for EEG-based motor-imagery recognition. In this paper, we present a novel algorithm, called Support Vector Machine-Canonical Correlation Analysis-Channel Selection (SVM-CCA-CS). First, the energy features of the wavelet packet subnodes of the motor-imagery EEG signals are extracted. Then the weights of feature groups are calculated as initial channel weights, based on the CCA algorithm. The initial channel weights are further adjusted, according to the contribution of each channel to the classification accuracy via SVM, and the top channels with larger weights are eventually selected. The results show that the average accuracy of all subjects can reach 80.03% by using the first 30 channels with the largest weights from among the total of 118 channels. For the right hand and foot motor-imagery tasks, the generally applicable optimal channels are mostly located in the left hemisphere. Our generally applicable channel observation of the whole brain cortex suggests contralateral control correspondence: for unilateral motor imagery, the optimal channels are concentrated in the contralateral hemisphere. This is consistent with the contralateral control of the body by the human brain: the majority of the human motor and sensory fibers tend to control the contralateral limbs and pass through the midline of the body. Our proposed method provides optimal acquisition and analysis of the positions of EEG signals in specific motor-imagery tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
成就的沛菡完成签到 ,获得积分10
7秒前
zxy应助唐泽雪穗采纳,获得30
7秒前
Tysonqu完成签到,获得积分10
9秒前
sci_zt完成签到 ,获得积分10
9秒前
10秒前
易止完成签到 ,获得积分10
10秒前
欢呼的茗茗完成签到 ,获得积分10
11秒前
方方完成签到 ,获得积分10
11秒前
11秒前
丰富的慕卉完成签到,获得积分10
13秒前
孙晓燕完成签到 ,获得积分10
16秒前
20秒前
唐泽雪穗发布了新的文献求助30
20秒前
xczhu完成签到,获得积分0
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
Wayne完成签到 ,获得积分10
25秒前
忐忑的中心完成签到 ,获得积分10
26秒前
红糖订书机完成签到 ,获得积分10
31秒前
DD完成签到,获得积分10
31秒前
Lucas应助JUAN采纳,获得10
34秒前
量子星尘发布了新的文献求助10
35秒前
娜娜完成签到 ,获得积分10
35秒前
YHBBZ完成签到 ,获得积分10
35秒前
窝窝头完成签到 ,获得积分10
40秒前
CipherSage应助lin采纳,获得10
44秒前
zhangj696完成签到,获得积分10
44秒前
JUAN完成签到,获得积分10
46秒前
yinyin完成签到 ,获得积分10
46秒前
现代期待完成签到,获得积分10
47秒前
51秒前
握瑾怀瑜完成签到 ,获得积分0
51秒前
weng完成签到,获得积分10
52秒前
wxh完成签到 ,获得积分10
57秒前
uouuo完成签到 ,获得积分10
59秒前
羊白玉完成签到 ,获得积分0
1分钟前
缥缈的觅风完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
apt完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066726
求助须知:如何正确求助?哪些是违规求助? 4288676
关于积分的说明 13360388
捐赠科研通 4108050
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254924
关于科研通互助平台的介绍 1187333