Momentum-Net: Fast and Convergent Iterative Neural Network for Inverse Problems

外推法 迭代重建 算法 计算机科学 人工神经网络 数学优化 人工智能 数学 数学分析
作者
Il Yong Chun,Zhengyu Huang,Hongki Lim,Jeffrey A. Fessler
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (4): 4915-4931 被引量:84
标识
DOI:10.1109/tpami.2020.3012955
摘要

Iterative neural networks (INN) are rapidly gaining attention for solving inverse problems in imaging, image processing, and computer vision. INNs combine regression NNs and an iterative model-based image reconstruction (MBIR) algorithm, often leading to both good generalization capability and outperforming reconstruction quality over existing MBIR optimization models. This paper proposes the first fast and convergent INN architecture, Momentum-Net, by generalizing a block-wise MBIR algorithm that uses momentum and majorizers with regression NNs. For fast MBIR, Momentum-Net uses momentum terms in extrapolation modules, and noniterative MBIR modules at each iteration by using majorizers, where each iteration of Momentum-Net consists of three core modules: image refining, extrapolation, and MBIR. Momentum-Net guarantees convergence to a fixed-point for general differentiable (non)convex MBIR functions (or data-fit terms) and convex feasible sets, under two asymptomatic conditions. To consider data-fit variations across training and testing samples, we also propose a regularization parameter selection scheme based on the "spectral spread" of majorization matrices. Numerical experiments for light-field photography using a focal stack and sparse-view computational tomography demonstrate that, given identical regression NN architectures, Momentum-Net significantly improves MBIR speed and accuracy over several existing INNs; it significantly improves reconstruction quality compared to a state-of-the-art MBIR method in each application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
good发布了新的文献求助10
刚刚
123完成签到,获得积分10
刚刚
YJ发布了新的文献求助10
1秒前
1秒前
1秒前
allenzhen完成签到,获得积分10
1秒前
vsoar完成签到,获得积分10
2秒前
卡拉蜜儿应助月青悠采纳,获得50
2秒前
2秒前
3秒前
隋阳发布了新的文献求助10
3秒前
zho发布了新的文献求助10
4秒前
4秒前
白英完成签到,获得积分10
5秒前
shaonianzu完成签到 ,获得积分10
6秒前
ID发布了新的文献求助10
6秒前
wys完成签到 ,获得积分10
6秒前
6秒前
feather发布了新的文献求助10
7秒前
YANG发布了新的文献求助10
7秒前
英俊的铭应助细心的雁玉采纳,获得10
7秒前
8秒前
秋水完成签到 ,获得积分10
8秒前
qqj完成签到,获得积分10
8秒前
千跃应助jenny采纳,获得10
8秒前
9秒前
友好碧完成签到 ,获得积分10
9秒前
10秒前
江舟添盛望完成签到 ,获得积分10
10秒前
11秒前
言非离完成签到,获得积分10
11秒前
犹豫大树发布了新的文献求助10
14秒前
14秒前
YY张发布了新的文献求助10
14秒前
kin完成签到,获得积分10
14秒前
15秒前
15秒前
乱世才子发布了新的文献求助10
16秒前
米恩发布了新的文献求助10
17秒前
moon发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707