Momentum-Net: Fast and Convergent Iterative Neural Network for Inverse Problems

外推法 迭代重建 算法 计算机科学 人工神经网络 数学优化 人工智能 数学 数学分析
作者
Il Yong Chun,Zhengyu Huang,Hongki Lim,Jeffrey A. Fessler
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (4): 4915-4931 被引量:84
标识
DOI:10.1109/tpami.2020.3012955
摘要

Iterative neural networks (INN) are rapidly gaining attention for solving inverse problems in imaging, image processing, and computer vision. INNs combine regression NNs and an iterative model-based image reconstruction (MBIR) algorithm, often leading to both good generalization capability and outperforming reconstruction quality over existing MBIR optimization models. This paper proposes the first fast and convergent INN architecture, Momentum-Net, by generalizing a block-wise MBIR algorithm that uses momentum and majorizers with regression NNs. For fast MBIR, Momentum-Net uses momentum terms in extrapolation modules, and noniterative MBIR modules at each iteration by using majorizers, where each iteration of Momentum-Net consists of three core modules: image refining, extrapolation, and MBIR. Momentum-Net guarantees convergence to a fixed-point for general differentiable (non)convex MBIR functions (or data-fit terms) and convex feasible sets, under two asymptomatic conditions. To consider data-fit variations across training and testing samples, we also propose a regularization parameter selection scheme based on the "spectral spread" of majorization matrices. Numerical experiments for light-field photography using a focal stack and sparse-view computational tomography demonstrate that, given identical regression NN architectures, Momentum-Net significantly improves MBIR speed and accuracy over several existing INNs; it significantly improves reconstruction quality compared to a state-of-the-art MBIR method in each application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9420完成签到,获得积分10
刚刚
隐形曼青应助hunajx采纳,获得10
刚刚
sasasas发布了新的文献求助10
1秒前
HN洪完成签到,获得积分10
1秒前
莫言发布了新的文献求助10
1秒前
shuoshuo发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
无曲应助科研通管家采纳,获得20
2秒前
2秒前
酷酷问梅完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
野狗拉丽发布了新的文献求助10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
Koalas应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Lilith应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
反杀闰土的猹完成签到 ,获得积分10
4秒前
5秒前
6秒前
酷波er应助qinkoko采纳,获得10
6秒前
ybigwhite应助猛犸象冲冲冲采纳,获得20
7秒前
完美世界应助坚持坚持采纳,获得10
7秒前
热心冷亦完成签到,获得积分10
8秒前
8秒前
海带拳大力士完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123189
求助须知:如何正确求助?哪些是违规求助? 4327690
关于积分的说明 13485306
捐赠科研通 4161935
什么是DOI,文献DOI怎么找? 2281094
邀请新用户注册赠送积分活动 1282577
关于科研通互助平台的介绍 1221658