Assessment of Human Reliability Under the Conditions of Uncertainty: SPAR-H Methodology Interpreted in Terms of Interval-Valued Probabilities

人的可靠性 可靠性(半导体) 区间(图论) Spar平台 集合(抽象数据类型) 计算机科学 概率分布 人为错误 随机变量 可靠性工程 区间算术 统计 数学 工程类 数学分析 功率(物理) 物理 结构工程 量子力学 组合数学 有界函数 程序设计语言
作者
Victor Krymsky,Farit M. Akhmedzhanov
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASME International]
卷期号:7 (2) 被引量:1
标识
DOI:10.1115/1.4050167
摘要

Abstract The well-known standardized plant analysis risk-human reliability (SPAR-H) methodology is widely used for analysis of human reliability in complex technological systems. It allows assessing the human error probability taking into account eight important groups of performance shaping factors. Application of this methodology to practical problems traditionally involves assumptions which are difficult to verify under the conditions of uncertainty. In particular, it introduces only two possible values of the nominal human error probabilities (for diagnosis and for actions) which do not cover the whole spectrum of the tasks within operator's activity. In addition, although the traditional methodology considers the probabilities of human errors as the random variables, it operates only on a single predefined type of distribution for these variables and does not deal with the real situations in which the type of distribution remains uncertain. The paper proposes modification to the classical approach to enable more adequate modeling of real situations with the lack of available information. The authors suggest usage of the interval-valued probability technique and of the expert judgment on the maximum probability density for actual probabilities of human errors. Such methodology allows obtaining generic results that are valid for the entire set of possible distributions (not only for one of them). The modified methodology gives possibility to derive final assessments of human reliability in interval form indicating “the best case” and “the worst case.” A few numerical examples illustrate the main stages of the suggested procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snail完成签到,获得积分10
1秒前
劈里啪啦完成签到,获得积分10
1秒前
wanci应助Jasmine采纳,获得10
2秒前
aoxiangcaizi12完成签到,获得积分10
2秒前
ding应助通~采纳,获得30
3秒前
4秒前
Annie发布了新的文献求助10
4秒前
晨曦完成签到,获得积分10
5秒前
十一发布了新的文献求助10
5秒前
顾矜应助Peter采纳,获得30
6秒前
Ayanami完成签到,获得积分10
6秒前
英俊的铭应助ysl采纳,获得30
6秒前
酷波er应助范范采纳,获得10
6秒前
7秒前
Akim应助damian采纳,获得30
7秒前
7秒前
9秒前
番茄炒西红柿完成签到,获得积分10
10秒前
无限安蕾完成签到,获得积分10
10秒前
10秒前
飘逸蘑菇发布了新的文献求助10
11秒前
混沌完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
xg发布了新的文献求助10
13秒前
看看发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
Annie完成签到,获得积分10
15秒前
15秒前
通~发布了新的文献求助30
16秒前
16秒前
雨雾发布了新的文献求助10
17秒前
daiyapeng完成签到,获得积分10
17秒前
ivy应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794