The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug delivery indicate their significance in modern drug design

神经形态工程学 计算机科学 纳米技术 高效能源利用 计算 冯·诺依曼建筑 计算机体系结构 计算机工程 材料科学 分布式计算 人工智能 人工神经网络 工程类 算法 操作系统 电气工程
作者
Parichehr Hassanzadeh
出处
期刊:Life Sciences [Elsevier BV]
卷期号:279: 119272-119272 被引量:16
标识
DOI:10.1016/j.lfs.2021.119272
摘要

Remarkable advancements in the computational techniques and nanoelectronics have attracted considerable interests for development of highly-sophisticated materials (Ms) including the theranostics with optimal characteristics and innovative delivery systems. Analyzing the huge amounts of multivariate data and solving the newly-emerged complicated problems including the healthcare-related ones have created increasing demands for improving the computational speed and minimizing the consumption of energy. Shifting towards the non-von Neumann approaches enables performing specific computational tasks and optimizing the processing of signals. Besides usefulness for neuromorphic computing and increasing the efficiency of computation energy, 2-D electronic Ms are capable of optical sensing with ultra-fast and ultra-sensitive responses, mimicking the neurons, detection of pathogens or biomolecules, and prediction of the progression of diseases, assessment of the pharmacokinetics/pharmacodynamics of therapeutic candidates, mimicking the dynamics of the release of neurotransmitters or fluxes of ions that might provide a deeper knowledge about the computations and information flow in the brain, and development of more effective treatment protocols with improved outcomes. 2-D Ms appear as the major components of the next-generation electronically-enabled devices for highly-advanced computations, bio-imaging, diagnostics, tissue engineering, and designing smart systems for site-specific delivery of therapeutics that might result in the reduced adverse effects of drugs and improved patient compliance. This manuscript highlights the significance of 2-D Ms in the neuromorphic computing, optimizing the energy efficiency of the multi-step computations, providing novel architectures or multi-functional systems, improved performance of a variety of devices and bio-inspired functionalities, and delivery of theranostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助CaoRouLi采纳,获得10
刚刚
慕青应助TKTK采纳,获得30
2秒前
Xiaojie完成签到,获得积分10
3秒前
4秒前
Ghost完成签到,获得积分10
4秒前
徐振阳发布了新的文献求助10
4秒前
6秒前
6秒前
独特元蝶发布了新的文献求助10
6秒前
8秒前
9秒前
10秒前
liangye2222发布了新的文献求助10
11秒前
11秒前
小毛驴完成签到,获得积分10
11秒前
12秒前
Huang_being发布了新的文献求助10
13秒前
refraincc发布了新的文献求助10
15秒前
song发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
Orange应助BeBrave1028采纳,获得10
18秒前
Andrew完成签到,获得积分10
18秒前
19秒前
独特元蝶完成签到,获得积分20
19秒前
醉熏的灵发布了新的文献求助30
19秒前
cyyyyyyyyyy完成签到,获得积分10
21秒前
何1发布了新的文献求助10
21秒前
yang完成签到,获得积分10
22秒前
深情安青应助冬瓜熊采纳,获得10
22秒前
24秒前
cindywu发布了新的文献求助10
24秒前
白先生完成签到 ,获得积分10
25秒前
二哥和他的长毛黄完成签到,获得积分10
26秒前
26秒前
26秒前
科研通AI2S应助refraincc采纳,获得10
27秒前
28秒前
官官发布了新的文献求助10
29秒前
555557应助年轻的烨华采纳,获得10
29秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068