The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug delivery indicate their significance in modern drug design

神经形态工程学 计算机科学 纳米技术 高效能源利用 计算 冯·诺依曼建筑 计算机体系结构 计算机工程 材料科学 分布式计算 人工智能 人工神经网络 工程类 算法 操作系统 电气工程
作者
Parichehr Hassanzadeh
出处
期刊:Life Sciences [Elsevier BV]
卷期号:279: 119272-119272 被引量:16
标识
DOI:10.1016/j.lfs.2021.119272
摘要

Remarkable advancements in the computational techniques and nanoelectronics have attracted considerable interests for development of highly-sophisticated materials (Ms) including the theranostics with optimal characteristics and innovative delivery systems. Analyzing the huge amounts of multivariate data and solving the newly-emerged complicated problems including the healthcare-related ones have created increasing demands for improving the computational speed and minimizing the consumption of energy. Shifting towards the non-von Neumann approaches enables performing specific computational tasks and optimizing the processing of signals. Besides usefulness for neuromorphic computing and increasing the efficiency of computation energy, 2-D electronic Ms are capable of optical sensing with ultra-fast and ultra-sensitive responses, mimicking the neurons, detection of pathogens or biomolecules, and prediction of the progression of diseases, assessment of the pharmacokinetics/pharmacodynamics of therapeutic candidates, mimicking the dynamics of the release of neurotransmitters or fluxes of ions that might provide a deeper knowledge about the computations and information flow in the brain, and development of more effective treatment protocols with improved outcomes. 2-D Ms appear as the major components of the next-generation electronically-enabled devices for highly-advanced computations, bio-imaging, diagnostics, tissue engineering, and designing smart systems for site-specific delivery of therapeutics that might result in the reduced adverse effects of drugs and improved patient compliance. This manuscript highlights the significance of 2-D Ms in the neuromorphic computing, optimizing the energy efficiency of the multi-step computations, providing novel architectures or multi-functional systems, improved performance of a variety of devices and bio-inspired functionalities, and delivery of theranostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助夜莺采纳,获得10
1秒前
在水一方应助夜莺采纳,获得10
1秒前
Lucas应助夜莺采纳,获得10
1秒前
Jasper应助夜莺采纳,获得10
1秒前
完美世界应助onepine采纳,获得10
1秒前
落后青筠完成签到 ,获得积分10
1秒前
3秒前
JamesPei应助jeonghan采纳,获得10
4秒前
Adler发布了新的文献求助60
4秒前
wy_wy完成签到,获得积分10
4秒前
情怀应助猪猪hero采纳,获得10
5秒前
浮华完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
丘比特应助Jeje采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
超人研究生完成签到,获得积分10
7秒前
C胖胖完成签到,获得积分10
7秒前
Owen应助chromium22采纳,获得10
7秒前
颜靖仇完成签到,获得积分10
8秒前
大方若山完成签到,获得积分10
8秒前
nanami完成签到,获得积分10
9秒前
白开水完成签到,获得积分10
10秒前
流云完成签到,获得积分10
11秒前
匹诺曹完成签到,获得积分10
11秒前
HaojunWang完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
LilyHan完成签到,获得积分20
14秒前
梁业完成签到,获得积分10
15秒前
苗条映寒关注了科研通微信公众号
15秒前
深情安青应助and999采纳,获得10
15秒前
兮豫完成签到 ,获得积分10
15秒前
15秒前
15秒前
Gtx完成签到,获得积分10
16秒前
淡定大雁关注了科研通微信公众号
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069