胰岛素抵抗
内科学
内分泌学
过剩4
二甲双胍
化学
IRS1
糖尿病
胰岛素
胰岛素受体
PI3K/AKT/mTOR通路
2型糖尿病
蛋白激酶B
骨骼肌
医学
细胞凋亡
生物化学
作者
Suwen Liu,Jincheng Yu,Meng-Fan Fu,Xinfang Wang,Xuedong Chang
标识
DOI:10.1016/j.foodres.2021.110239
摘要
Hawthorn polyphenol extract (HPE) is beneficial for patients with type 2 diabetes (T2D). However, the mechanism underlying its beneficial effects remains unclear. We investigated the inhibitory effects and mechanisms of HPE on insulin resistance, inflammation, and aortic injury in T2D rats, using metformin (MF) as a positive control. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) was used to determine the primary polyphenols in HPE. Hematoxylin & Eosin (H&E) staining was used to evaluate pathological conditions of the skeletal muscle, liver, and aorta vessels in each group. The levels of serum and intestinal tissue oxidative stress, tumor necrosis factor α (TNF-α), and inflammatory interleukin-6 (IL-6) were also assessed. Western blotting was used to evaluate protein expression levels in the associated molecular pathway. Volatile organic compounds (VOCs) from colon contents were determined using headspace-gas chromatography-ion mobility chromatography. Our results showed that supplementation with 300 mg HPE/kg body weight over four weeks significantly improved total cholesterol (TC), total triglyceride (TG), insulin, and lipopolysaccharide (LPS) levels in diabetic rats (p < 0.01). The lesions of skeletal muscle, liver, and aorta in diabetic rats were significantly improved. HPE supplementation also significantly downregulated the inflammatory factors (IL-6, TNF-α, and MCP-1) in the liver of diabetic rats via the SIRT1/AMPK/NF-κB signaling pathway. Furthermore, HPE significantly reduced insulin resistance in T2D rats by upregulating the phosphorylation of glucose absorption protein (GLUT4) and insulin resistance-associated proteins, p-IRS1, p-AKT, and p-PI3K, in the rat liver (p < 0.01). The findings show that HPE could also alleviate aortic injury by activating SIRT1 and regulating the NF-κB and Wnt2/β-catenin signaling pathways. Overall, the results of this study suggest that both HPE and MF have similar inhibitory effects on T2D in rats and that HPE could be used as a functional food component in the adjuvant treatment of T2D.
科研通智能强力驱动
Strongly Powered by AbleSci AI