Using a Convolutional Neural Network to Predict Remission of Diabetes After Gastric Bypass Surgery: Machine Learning Study From the Scandinavian Obesity Surgery Register

医学 接收机工作特性 胃旁路手术 卷积神经网络 胃分流术 糖尿病 外科 人工智能 机器学习 内科学 肥胖 计算机科学 减肥 内分泌学
作者
Yang Cao,Ingmar Näslund,Erik Näslund,Johan Ottosson,Scott Montgomery,Erik Stenberg
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:9 (8): e25612-e25612 被引量:11
标识
DOI:10.2196/25612
摘要

Background Prediction of diabetes remission is an important topic in the evaluation of patients with type 2 diabetes (T2D) before bariatric surgery. Several high-quality predictive indices are available, but artificial intelligence algorithms offer the potential for higher predictive capability. Objective This study aimed to construct and validate an artificial intelligence prediction model for diabetes remission after Roux-en-Y gastric bypass surgery. Methods Patients who underwent surgery from 2007 to 2017 were included in the study, with collection of individual data from the Scandinavian Obesity Surgery Registry (SOReg), the Swedish National Patients Register, the Swedish Prescribed Drugs Register, and Statistics Sweden. A 7-layer convolution neural network (CNN) model was developed using 80% (6446/8057) of patients randomly selected from SOReg and 20% (1611/8057) of patients for external testing. The predictive capability of the CNN model and currently used scores (DiaRem, Ad-DiaRem, DiaBetter, and individualized metabolic surgery) were compared. Results In total, 8057 patients with T2D were included in the study. At 2 years after surgery, 77.09% achieved pharmacological remission (n=6211), while 63.07% (4004/6348) achieved complete remission. The CNN model showed high accuracy for cessation of antidiabetic drugs and complete remission of T2D after gastric bypass surgery. The area under the receiver operating characteristic curve (AUC) for the CNN model for pharmacological remission was 0.85 (95% CI 0.83-0.86) during validation and 0.83 for the final test, which was 9%-12% better than the traditional predictive indices. The AUC for complete remission was 0.83 (95% CI 0.81-0.85) during validation and 0.82 for the final test, which was 9%-11% better than the traditional predictive indices. Conclusions The CNN method had better predictive capability compared to traditional indices for diabetes remission. However, further validation is needed in other countries to evaluate its external generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浴火重生完成签到,获得积分10
刚刚
九姑娘完成签到 ,获得积分10
刚刚
广隶十良完成签到,获得积分20
1秒前
大大大完成签到,获得积分10
1秒前
斗图不怕输完成签到,获得积分10
1秒前
2秒前
yao完成签到,获得积分10
2秒前
在水一方应助无限的宫苴采纳,获得10
2秒前
2秒前
sasa发布了新的文献求助10
2秒前
Owen应助aura采纳,获得10
3秒前
苯妥英俊完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
7秒前
广隶十良发布了新的文献求助20
7秒前
astalavista完成签到,获得积分10
7秒前
杨涛发布了新的文献求助10
7秒前
孙天成发布了新的文献求助10
9秒前
astalavista发布了新的文献求助10
10秒前
休眠火山发布了新的文献求助10
10秒前
10秒前
小二郎应助刘佳敏采纳,获得10
11秒前
11秒前
踏实的初珍完成签到,获得积分10
12秒前
Grace发布了新的文献求助20
14秒前
14秒前
cheng完成签到,获得积分20
15秒前
愉快的败完成签到,获得积分10
15秒前
15秒前
77发布了新的文献求助10
16秒前
16秒前
15327432191发布了新的文献求助10
17秒前
Starry完成签到,获得积分10
17秒前
FashionBoy应助孤独的AD钙采纳,获得10
17秒前
shw完成签到,获得积分10
18秒前
18秒前
田様应助哭泣的采波采纳,获得10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312794
求助须知:如何正确求助?哪些是违规求助? 2945217
关于积分的说明 8523802
捐赠科研通 2621000
什么是DOI,文献DOI怎么找? 1433267
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650271