Chameleons' Oblivion: Complex-Valued Deep Neural Networks for Protocol-Agnostic RF Device Fingerprinting

计算机科学 协议(科学) 深层神经网络 人工神经网络 人工智能 医学 病理 替代医学
作者
Ioannis Agadakos,Nikolaos Agadakos,Jason Polakis,Mohamed R. Amer
标识
DOI:10.1109/eurosp48549.2020.00028
摘要

Prior work has demonstrated techniques for fingerprinting devices based on their network traffic or transmitted signals, which use software artifacts or characteristics of the underlying protocol. However these approaches are not robust or applicable in many real-world scenarios. In this paper we explore the feasibility of device fingerprinting under challenging realistic settings, by identifying artifacts in the transmitted signals caused by devices' unique hardware "imperfections". We develop RF-DCN, a novel Deep Complex-valued Neural Network (DCN) that operates on raw RF signals and is completely agnostic of the underlying applications and protocols. We introduce two DCN variations: a retrofitted Convolutional DCN (CDCN) originally created for acoustic signals, and a novel Recurrent DCN (RDCN) for modeling time series. Our work demonstrates the feasibility of operating on raw I/Q data collected within a narrowband spectrum from open air captures across vastly different modulation schemes. In contrast to prior work, we do not utilize knowledge of the modulation scheme or protocol intricacies such as carrier frequencies. We conduct an extensive experimental evaluation on large and diverse datasets as part of a DARPA red team evaluation, and investigate the effects of different environmental factors as well as neural network architectures and hyperparameters on our system's performance. Our novel RDCN consistently outperforms all baseline neural network architectures, is robust to noise, and can identify a target device even when numerous devices are concurrently transmitting within the band of interest under the same or different protocols. While our experiments demonstrate the applicability of our techniques under challenging conditions where other neural network architectures break down, we identify additional challenges in signal-based fingerprinting and provide guidelines for future explorations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猪鱿鱼发布了新的文献求助10
2秒前
香蕉觅云应助落寞银耳汤采纳,获得10
3秒前
4秒前
yuyu完成签到 ,获得积分10
4秒前
Tinsulfides完成签到,获得积分10
6秒前
懒熊发布了新的文献求助10
9秒前
嗒嗒发布了新的文献求助10
10秒前
liz关注了科研通微信公众号
13秒前
Yacon完成签到 ,获得积分10
17秒前
俺村俺最牛完成签到,获得积分10
22秒前
23秒前
25秒前
CMCM发布了新的文献求助30
29秒前
30秒前
31秒前
32秒前
33秒前
33秒前
34秒前
舒心靖琪完成签到 ,获得积分10
35秒前
酷波er应助三水采纳,获得10
35秒前
刘子龙发布了新的文献求助10
35秒前
36秒前
liz发布了新的文献求助10
36秒前
薛定谔的猫完成签到 ,获得积分10
36秒前
无花果应助duxy采纳,获得10
36秒前
37秒前
11完成签到,获得积分20
39秒前
古卡可可完成签到,获得积分10
39秒前
打打应助qiu采纳,获得10
40秒前
任性访风完成签到,获得积分10
42秒前
43秒前
45秒前
duxy完成签到,获得积分20
45秒前
三水发布了新的文献求助10
48秒前
雨堂完成签到 ,获得积分10
48秒前
duxy发布了新的文献求助10
48秒前
48秒前
星辰大海应助爱笑的万天采纳,获得10
53秒前
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290