A Lightweight On-Device Detection Method for Android Malware

计算机科学 恶意软件 Android(操作系统) 移动设备 探测器 人工智能 Android恶意软件 机器学习 卷积神经网络 稳健性(进化) 仿人机器人 深度学习 服务器 嵌入式系统 计算机安全 操作系统 机器人 电信 生物化学 化学 基因
作者
Wei Yuan,Yuan Jiang,Heng Li,Minghui Cai
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (9): 5600-5611 被引量:33
标识
DOI:10.1109/tsmc.2019.2958382
摘要

Android malware poses severe threats to users, hence raising an urgent demand for malware detection. In-cloud Android malware detection often suffers privacy leakage and communication overheads. Therefore, this article focuses on on-device Android malware detection. At present, on-device malware detectors are usually trained on servers and then transplanted to mobile devices (e.g., smartphones). In practice, on-device training is particularly important due to the demand for offline updates. Because mobile devices are limited in resource, however, on-device training is hard to implement, especially for those high-complexity malware detectors. To overcome this challenge, we design a lightweight on-device Android malware detector, based on the recently proposed broad learning method. Our detector mainly uses one-shot computation for model training. Hence it can be fully or incrementally trained directly on mobile devices. As far as detection accuracy is concerned, our detector outperforms the shallow learning-based models, including support vector machine (SVM) and AdaBoost, and approaches the deep learning-based models multilayer perceptron (MLP) and convolutional neural network (CNN). Moreover, our detector is more robust to adversarial examples than the existing detectors, and its robustness can be further improved through on-device model retraining. Finally, its advantages are confirmed by extensive experiments, and its practicality is demonstrated through runtime evaluation on smartphones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
H-kevin.完成签到 ,获得积分10
刚刚
刚刚
刚刚
科研通AI6应助迪卢克采纳,获得10
刚刚
2秒前
Alas_gulf发布了新的文献求助10
2秒前
简单画笔完成签到,获得积分10
2秒前
chaos完成签到,获得积分10
2秒前
2秒前
zg完成签到,获得积分10
3秒前
Aaaalii发布了新的文献求助10
3秒前
薇薇辣完成签到,获得积分10
3秒前
4秒前
脑洞疼应助你好这位仁兄采纳,获得10
4秒前
星河zp发布了新的文献求助10
4秒前
halabouqii发布了新的文献求助10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
丘比特应助故意的心情采纳,获得10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
包子发布了新的文献求助10
5秒前
小杭76应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572