亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Location-Based PVO and Adaptive Pairwise Modification for Efficient Reversible Data Hiding

嵌入 直方图 计算机科学 信息隐藏 像素 图像(数学) 块(置换群论) 直方图匹配 算法 成对比较 人工智能 模式识别(心理学) 数学 几何学
作者
Tong Zhang,Xiaolong Li,Wenfa Qi,Zhongwen Guo
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 2306-2319 被引量:46
标识
DOI:10.1109/tifs.2019.2963766
摘要

Pixel-value-ordering (PVO) is an efficient technique of reversible data hiding (RDH). By PVO, the maximum and minimum in each cover image block are first predicted and then modified to embed data. Actually, many PVO-based methods are essentially based on high-dimensional histogram modification. For these methods, a two-dimensional (2D) prediction-error histogram (PEH) is first generated and then modified based on a 2D mapping. However, these methods have two drawbacks. On one hand, the generated 2D PEH is irregular so that it is difficult to design suitable histogram modification strategy. On the other hand, the employed 2D mapping is empirically designed, and thus the embedding performance is far from optimal. Based on these considerations, a new PVO-based RDH scheme is proposed in this paper. By considering both pixel value orders and pixel locations, a new predictor is proposed so that the generated 2D PEH is regular in shape and suitable for reversible embedding. Moreover, instead of manually designing 2D mappings, to optimize the embedding performance, a self-learning mechanism is proposed to adaptively select the 2D mapping according to the image content. With the new predictor and the self-learning mechanism for 2D mapping selection, the proposed method works well with a good marked image quality, e.g., the PSNR of the image Lena is as high as 61.53 dB for an embedding capacity of 10 000 bits. Besides, compared with some state-of-the-art RDH methods, the superiority of the proposed method is experimentally verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tamo完成签到,获得积分10
10秒前
17秒前
惊蛰发布了新的文献求助10
23秒前
袁雪蓓完成签到 ,获得积分10
40秒前
葛力发布了新的文献求助10
1分钟前
1分钟前
高兴曼寒发布了新的文献求助10
1分钟前
2分钟前
AprilLeung完成签到 ,获得积分10
2分钟前
2分钟前
daixan89完成签到 ,获得积分10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
高兴曼寒完成签到,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
0911wxt发布了新的文献求助10
4分钟前
0911wxt完成签到,获得积分10
4分钟前
5分钟前
5分钟前
俭朴的红牛完成签到,获得积分10
5分钟前
5分钟前
激动的似狮完成签到,获得积分10
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
6分钟前
惊蛰完成签到,获得积分10
7分钟前
调研昵称发布了新的文献求助10
8分钟前
l老王完成签到 ,获得积分10
8分钟前
9分钟前
10分钟前
Chris完成签到 ,获得积分0
11分钟前
11分钟前
llewis完成签到 ,获得积分10
12分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
12分钟前
12分钟前
12分钟前
调研昵称发布了新的文献求助10
12分钟前
调研昵称发布了新的文献求助10
12分钟前
fransiccarey完成签到,获得积分10
12分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376851
求助须知:如何正确求助?哪些是违规求助? 2992962
关于积分的说明 8752834
捐赠科研通 2677311
什么是DOI,文献DOI怎么找? 1466571
科研通“疑难数据库(出版商)”最低求助积分说明 678385
邀请新用户注册赠送积分活动 669930