Learning under Concept Drift: A Review

概念漂移 计算机科学 领域(数学) 适应(眼睛) 水准点(测量) 质量(理念) 数据科学 随机漂移 流式数据 人工智能 机器学习 数据挖掘 数据流挖掘 物理 地理 纯数学 哲学 光学 认识论 统计 数学 大地测量学
作者
Anjin Liu,Anjin Liu,Fan Dong,Fengshou Gu,João Gama,Guangquan Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:538
标识
DOI:10.1109/tkde.2018.2876857
摘要

Concept drift describes unforeseeable changes in the underlying distribution of streaming data over time. Concept drift research involves the development of methodologies and techniques for drift detection, understanding and adaptation. Data analysis has revealed that machine learning in a concept drift environment will result in poor learning results if the drift is not addressed. To help researchers identify which research topics are significant and how to apply related techniques in data analysis tasks, it is necessary that a high quality, instructive review of current research developments and trends in the concept drift field is conducted. In addition, due to the rapid development of concept drift in recent years, the methodologies of learning under concept drift have become noticeably systematic, unveiling a framework which has not been mentioned in literature. This paper reviews over 130 high quality publications in concept drift related research areas, analyzes up-to-date developments in methodologies and techniques, and establishes a framework of learning under concept drift including three main components: concept drift detection, concept drift understanding, and concept drift adaptation. This paper lists and discusses 10 popular synthetic datasets and 14 publicly available benchmark datasets used for evaluating the performance of learning algorithms aiming at handling concept drift. Also, concept drift related research directions are covered and discussed. By providing state-of-the-art knowledge, this survey will directly support researchers in their understanding of research developments in the field of learning under concept drift.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助白元正采纳,获得10
刚刚
zhangjw完成签到 ,获得积分10
1秒前
1秒前
乐观寻绿完成签到,获得积分10
3秒前
PEX发布了新的文献求助10
4秒前
夏昼苦长完成签到,获得积分10
4秒前
开心potato完成签到 ,获得积分20
5秒前
zqj完成签到,获得积分10
8秒前
xw完成签到,获得积分10
8秒前
夏昼苦长发布了新的文献求助10
8秒前
9秒前
时尚语梦完成签到 ,获得积分10
10秒前
10秒前
光亮小笼包完成签到 ,获得积分10
11秒前
橙橙完成签到,获得积分10
11秒前
丰盛的煎饼应助zqj采纳,获得10
14秒前
娜是一阵风完成签到 ,获得积分10
14秒前
14秒前
linzy完成签到,获得积分10
14秒前
轻轻完成签到 ,获得积分10
15秒前
可爱的函函应助Only采纳,获得10
15秒前
家向松完成签到,获得积分10
15秒前
烷基八氮完成签到,获得积分10
15秒前
风趣访卉完成签到,获得积分10
15秒前
曾经的听云完成签到 ,获得积分10
16秒前
123完成签到,获得积分10
16秒前
行萱完成签到 ,获得积分10
17秒前
劳资懒得起网名完成签到,获得积分10
18秒前
zpp完成签到 ,获得积分10
20秒前
笑、完成签到,获得积分10
20秒前
科小白完成签到 ,获得积分10
21秒前
Mannone完成签到 ,获得积分10
21秒前
机智的皮皮虾完成签到,获得积分10
21秒前
矮小的茹妖完成签到 ,获得积分10
22秒前
zhaoman完成签到,获得积分10
23秒前
白泽完成签到,获得积分10
25秒前
笨笨发布了新的文献求助10
26秒前
27秒前
大卫在分享完成签到,获得积分0
27秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056768
求助须知:如何正确求助?哪些是违规求助? 2713310
关于积分的说明 7435391
捐赠科研通 2358319
什么是DOI,文献DOI怎么找? 1249367
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596259