真菌病毒
衣壳
生物
病毒学
RNA聚合酶
蛋白质亚单位
核糖核酸
病毒
遗传学
基因
作者
Carlos P. Mata,Javier M. Rodrı́guez,Nobuhiro Suzuki,José R. Castón
出处
期刊:Advances in Virus Research
日期:2020-01-01
卷期号:: 213-247
被引量:13
标识
DOI:10.1016/bs.aivir.2020.08.001
摘要
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T = 1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T = 1 capsid participates in RNA synthesis, organizing the viral polymerase (1–2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
科研通智能强力驱动
Strongly Powered by AbleSci AI