Interstitial lung abnormalities detected incidentally on CT: a Position Paper from the Fleischner Society

医学 间质性肺病 亚临床感染 放射性武器 放射科 疾病 重症监护医学 病理 内科学
作者
Hiroto Hatabu,Gary M. Hunninghake,Luca Richeldi,Kevin M. Brown,Athol U. Wells,Martine Rémy‐Jardin,Johny Verschakelen,Andrew G. Nicholson,Mary Beth Beasley,David C. Christiani,Raúl San Jośe Estépar,Joon Beom Seo,Takeshi Johkoh,Nicola Sverzellati,Christopher J. Ryerson,R. Graham Barr,Jin Mo Goo,John H. M. Austin,Charles A. Powell,Kyung Soo Lee,Yoshikazu Inoue,David A. Lynch
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:8 (7): 726-737 被引量:390
标识
DOI:10.1016/s2213-2600(20)30168-5
摘要

The term interstitial lung abnormalities refers to specific CT findings that are potentially compatible with interstitial lung disease in patients without clinical suspicion of the disease. Interstitial lung abnormalities are increasingly recognised as a common feature on CT of the lung in older individuals, occurring in 4-9% of smokers and 2-7% of non-smokers. Identification of interstitial lung abnormalities will increase with implementation of lung cancer screening, along with increased use of CT for other diagnostic purposes. These abnormalities are associated with radiological progression, increased mortality, and the risk of complications from medical interventions, such as chemotherapy and surgery. Management requires distinguishing interstitial lung abnormalities that represent clinically significant interstitial lung disease from those that are subclinical. In particular, it is important to identify the subpleural fibrotic subtype, which is more likely to progress and to be associated with mortality. This multidisciplinary Position Paper by the Fleischner Society addresses important issues regarding interstitial lung abnormalities, including standardisation of the definition and terminology; predisposing risk factors; clinical outcomes; options for initial evaluation, monitoring, and management; the role of quantitative evaluation; and future research needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daD发布了新的文献求助10
2秒前
单纯的戒指完成签到 ,获得积分10
4秒前
顾矜应助Cheng采纳,获得10
5秒前
LBJBowen23完成签到,获得积分10
6秒前
chenhd完成签到,获得积分10
7秒前
李健的小迷弟应助YYY采纳,获得10
8秒前
飘逸的麦片完成签到,获得积分10
8秒前
8秒前
啊呜发布了新的文献求助10
8秒前
wooooz完成签到,获得积分20
9秒前
10秒前
dongqiu完成签到,获得积分20
10秒前
10秒前
11秒前
英姑应助科研岗采纳,获得10
11秒前
Grass筱艳发布了新的文献求助10
12秒前
13秒前
HYH完成签到,获得积分10
15秒前
所所应助daD采纳,获得10
15秒前
Wdw2236发布了新的文献求助10
15秒前
我是老大应助Yolo采纳,获得10
16秒前
劲秉应助uii采纳,获得10
16秒前
18秒前
19秒前
20秒前
20秒前
21秒前
Xuan完成签到,获得积分10
22秒前
22秒前
Akim应助Yippee采纳,获得10
22秒前
wooooz发布了新的文献求助10
23秒前
科研岗发布了新的文献求助10
24秒前
tutou关注了科研通微信公众号
25秒前
25秒前
公冶飞风发布了新的文献求助10
25秒前
12发布了新的文献求助10
27秒前
28秒前
Yolo发布了新的文献求助10
29秒前
Xiaochou完成签到,获得积分10
30秒前
懒羊羊完成签到,获得积分10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732421
求助须知:如何正确求助?哪些是违规求助? 3276707
关于积分的说明 9998220
捐赠科研通 2992256
什么是DOI,文献DOI怎么找? 1642086
邀请新用户注册赠送积分活动 780202
科研通“疑难数据库(出版商)”最低求助积分说明 748713