Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics

医学 神经组阅片室 组内相关 肾透明细胞癌 磁共振成像 放射科 再现性 无线电技术 肾细胞癌 清除单元格 病理 核医学 临床心理学 统计 精神科 数学 心理测量学 神经学
作者
Enming Cui,Zhuoyong Li,Changyi Ma,Qing Li,Lei Yi,Yong Lan,Juan Yu,Zhipeng Zhou,Ronggang Li,Wansheng Long,Fan Lin
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (5): 2912-2921 被引量:93
标识
DOI:10.1007/s00330-019-06601-1
摘要

To investigate externally validated magnetic resonance (MR)–based and computed tomography (CT)–based machine learning (ML) models for grading clear cell renal cell carcinoma (ccRCC). Patients with pathologically proven ccRCC in 2009–2018 were retrospectively included for model development and internal validation; patients from another independent institution and The Cancer Imaging Archive dataset were included for external validation. Features were extracted from T1-weighted, T2-weighted, corticomedullary-phase (CMP), and nephrographic-phase (NP) MR as well as precontrast-phase (PCP), CMP, and NP CT. CatBoost was used for ML-model investigation. The reproducibility of texture features was assessed using intraclass correlation coefficient (ICC). Accuracy (ACC) was used for ML-model performance evaluation. Twenty external and 440 internal cases were included. Among 368 and 276 texture features from MR and CT, 322 and 250 features with good to excellent reproducibility (ICC ≥ 0.75) were included for ML-model development. The best MR- and CT-based ML models satisfactorily distinguished high- from low-grade ccRCCs in internal (MR-ACC = 73% and CT-ACC = 79%) and external (MR-ACC = 74% and CT-ACC = 69%) validation. Compared to single-sequence or single-phase images, the classifiers based on all-sequence MR (71% to 73% in internal and 64% to 74% in external validation) and all-phase CT (77% to 79% in internal and 61% to 69% in external validation) images had significant increases in ACC. MR- and CT-based ML models are valuable noninvasive techniques for discriminating high- from low-grade ccRCCs, and multiparameter MR- and multiphase CT–based classifiers are potentially superior to those based on single-sequence or single-phase imaging. • Both the MR- and CT-based machine learning models are reliable predictors for differentiating high- from low-grade ccRCCs. • ML models based on multiparameter MR sequences and multiphase CT images potentially outperform those based on single-sequence or single-phase images in ccRCC grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助不及采纳,获得10
刚刚
虚幻初之发布了新的文献求助20
刚刚
KT发布了新的文献求助10
刚刚
1秒前
Ava应助jwxstc采纳,获得10
1秒前
开心每一天完成签到,获得积分10
1秒前
1秒前
3秒前
科研通AI6应助左左采纳,获得30
3秒前
4秒前
姚盈盈发布了新的文献求助10
4秒前
orixero应助energetic采纳,获得10
4秒前
yaoyao6688发布了新的文献求助30
4秒前
5秒前
科研通AI6应助灵巧涵雁采纳,获得10
5秒前
5秒前
头哥应助如意幼枫采纳,获得10
5秒前
5秒前
6秒前
6秒前
科研通AI6应助善良谷蓝采纳,获得10
6秒前
是个宝耶完成签到 ,获得积分10
6秒前
6秒前
甜野发布了新的文献求助10
7秒前
可爱的函函应助liuuu采纳,获得10
7秒前
7秒前
Markov发布了新的文献求助30
7秒前
8秒前
文献自由发布了新的文献求助10
9秒前
orixero应助古德猫宁采纳,获得10
9秒前
从容映易完成签到,获得积分10
9秒前
9秒前
阿卡啵糖发布了新的文献求助10
10秒前
催催催发布了新的文献求助10
10秒前
hehe完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
一天给一天的求助进行了留言
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674