亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics

医学 神经组阅片室 组内相关 肾透明细胞癌 磁共振成像 放射科 再现性 无线电技术 肾细胞癌 清除单元格 病理 核医学 临床心理学 统计 精神科 数学 心理测量学 神经学
作者
Enming Cui,Zhuoyong Li,Changyi Ma,Qing Li,Lei Yi,Yong Lan,Juan Yu,Zhipeng Zhou,Ronggang Li,Wansheng Long,Fan Lin
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (5): 2912-2921 被引量:73
标识
DOI:10.1007/s00330-019-06601-1
摘要

To investigate externally validated magnetic resonance (MR)–based and computed tomography (CT)–based machine learning (ML) models for grading clear cell renal cell carcinoma (ccRCC). Patients with pathologically proven ccRCC in 2009–2018 were retrospectively included for model development and internal validation; patients from another independent institution and The Cancer Imaging Archive dataset were included for external validation. Features were extracted from T1-weighted, T2-weighted, corticomedullary-phase (CMP), and nephrographic-phase (NP) MR as well as precontrast-phase (PCP), CMP, and NP CT. CatBoost was used for ML-model investigation. The reproducibility of texture features was assessed using intraclass correlation coefficient (ICC). Accuracy (ACC) was used for ML-model performance evaluation. Twenty external and 440 internal cases were included. Among 368 and 276 texture features from MR and CT, 322 and 250 features with good to excellent reproducibility (ICC ≥ 0.75) were included for ML-model development. The best MR- and CT-based ML models satisfactorily distinguished high- from low-grade ccRCCs in internal (MR-ACC = 73% and CT-ACC = 79%) and external (MR-ACC = 74% and CT-ACC = 69%) validation. Compared to single-sequence or single-phase images, the classifiers based on all-sequence MR (71% to 73% in internal and 64% to 74% in external validation) and all-phase CT (77% to 79% in internal and 61% to 69% in external validation) images had significant increases in ACC. MR- and CT-based ML models are valuable noninvasive techniques for discriminating high- from low-grade ccRCCs, and multiparameter MR- and multiphase CT–based classifiers are potentially superior to those based on single-sequence or single-phase imaging. • Both the MR- and CT-based machine learning models are reliable predictors for differentiating high- from low-grade ccRCCs. • ML models based on multiparameter MR sequences and multiphase CT images potentially outperform those based on single-sequence or single-phase images in ccRCC grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
开心火龙果完成签到,获得积分10
8秒前
annis发布了新的文献求助10
10秒前
叽里呱啦完成签到 ,获得积分10
11秒前
大个应助舒适虔采纳,获得10
14秒前
南音完成签到 ,获得积分10
32秒前
独享属于自己的风完成签到,获得积分10
39秒前
45秒前
1分钟前
1分钟前
bo发布了新的文献求助10
1分钟前
ccc发布了新的文献求助10
1分钟前
熊仔一百完成签到 ,获得积分10
1分钟前
baiyixuan发布了新的文献求助20
1分钟前
1分钟前
1分钟前
baiyixuan发布了新的文献求助10
1分钟前
中心湖小海棠完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
1004发布了新的文献求助10
2分钟前
baiyixuan发布了新的文献求助20
2分钟前
cbt512133完成签到,获得积分10
2分钟前
传奇3应助1004采纳,获得10
2分钟前
李爱国应助cnspower采纳,获得30
2分钟前
2分钟前
孤傲的静脉完成签到,获得积分10
2分钟前
王太白完成签到,获得积分10
2分钟前
小王日记完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
yangmin发布了新的文献求助10
3分钟前
Aurora完成签到 ,获得积分10
3分钟前
GONGLI发布了新的文献求助10
3分钟前
脑洞疼应助baiyixuan采纳,获得10
3分钟前
Billy应助55555采纳,获得30
3分钟前
Summer_Xia完成签到 ,获得积分10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294412
求助须知:如何正确求助?哪些是违规求助? 2930341
关于积分的说明 8445940
捐赠科研通 2602598
什么是DOI,文献DOI怎么找? 1420666
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643433