已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics

医学 神经组阅片室 组内相关 肾透明细胞癌 磁共振成像 放射科 再现性 无线电技术 肾细胞癌 清除单元格 病理 核医学 临床心理学 统计 精神科 数学 心理测量学 神经学
作者
Enming Cui,Zhuoyong Li,Changyi Ma,Qing Li,Lei Yi,Yong Lan,Juan Yu,Zhipeng Zhou,Ronggang Li,Wansheng Long,Fan Lin
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (5): 2912-2921 被引量:93
标识
DOI:10.1007/s00330-019-06601-1
摘要

To investigate externally validated magnetic resonance (MR)–based and computed tomography (CT)–based machine learning (ML) models for grading clear cell renal cell carcinoma (ccRCC). Patients with pathologically proven ccRCC in 2009–2018 were retrospectively included for model development and internal validation; patients from another independent institution and The Cancer Imaging Archive dataset were included for external validation. Features were extracted from T1-weighted, T2-weighted, corticomedullary-phase (CMP), and nephrographic-phase (NP) MR as well as precontrast-phase (PCP), CMP, and NP CT. CatBoost was used for ML-model investigation. The reproducibility of texture features was assessed using intraclass correlation coefficient (ICC). Accuracy (ACC) was used for ML-model performance evaluation. Twenty external and 440 internal cases were included. Among 368 and 276 texture features from MR and CT, 322 and 250 features with good to excellent reproducibility (ICC ≥ 0.75) were included for ML-model development. The best MR- and CT-based ML models satisfactorily distinguished high- from low-grade ccRCCs in internal (MR-ACC = 73% and CT-ACC = 79%) and external (MR-ACC = 74% and CT-ACC = 69%) validation. Compared to single-sequence or single-phase images, the classifiers based on all-sequence MR (71% to 73% in internal and 64% to 74% in external validation) and all-phase CT (77% to 79% in internal and 61% to 69% in external validation) images had significant increases in ACC. MR- and CT-based ML models are valuable noninvasive techniques for discriminating high- from low-grade ccRCCs, and multiparameter MR- and multiphase CT–based classifiers are potentially superior to those based on single-sequence or single-phase imaging. • Both the MR- and CT-based machine learning models are reliable predictors for differentiating high- from low-grade ccRCCs. • ML models based on multiparameter MR sequences and multiphase CT images potentially outperform those based on single-sequence or single-phase images in ccRCC grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
oldblack完成签到,获得积分10
刚刚
潇湘雪月完成签到,获得积分10
1秒前
积极松完成签到 ,获得积分10
3秒前
5秒前
小医发布了新的文献求助10
5秒前
辣椒完成签到 ,获得积分10
6秒前
胡杨柳发布了新的文献求助10
7秒前
xyj完成签到,获得积分10
8秒前
佩吉完成签到 ,获得积分10
9秒前
9秒前
xyj发布了新的文献求助10
11秒前
1112131345发布了新的文献求助10
11秒前
kingsea发布了新的文献求助10
11秒前
乐乐应助hvgjgfjhgjh采纳,获得10
12秒前
fantianhui完成签到 ,获得积分10
12秒前
呵呵完成签到,获得积分10
13秒前
sulin完成签到 ,获得积分10
13秒前
13秒前
优雅山柏发布了新的文献求助10
15秒前
Cc完成签到 ,获得积分10
15秒前
Wsyyy完成签到 ,获得积分10
17秒前
Yikao完成签到 ,获得积分10
18秒前
19秒前
19秒前
番茄鱼完成签到 ,获得积分10
19秒前
考拉发布了新的文献求助10
20秒前
21秒前
洛城完成签到,获得积分10
22秒前
usora发布了新的文献求助10
24秒前
hvgjgfjhgjh发布了新的文献求助10
24秒前
xie发布了新的文献求助10
26秒前
YifanWang应助1461644768采纳,获得10
26秒前
深情安青应助xixixi采纳,获得10
27秒前
28秒前
考拉完成签到 ,获得积分10
33秒前
儒飞完成签到,获得积分10
35秒前
QingFeng完成签到,获得积分10
36秒前
36秒前
量子星尘发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681075
求助须知:如何正确求助?哪些是违规求助? 5003997
关于积分的说明 15174789
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594411
邀请新用户注册赠送积分活动 1547531
关于科研通互助平台的介绍 1505468