Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics

医学 神经组阅片室 组内相关 肾透明细胞癌 磁共振成像 放射科 再现性 无线电技术 肾细胞癌 清除单元格 病理 核医学 临床心理学 统计 精神科 数学 心理测量学 神经学
作者
Enming Cui,Zhuoyong Li,Changyi Ma,Qing Li,Lei Yi,Yong Lan,Juan Yu,Zhipeng Zhou,Ronggang Li,Wansheng Long,Fan Lin
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (5): 2912-2921 被引量:73
标识
DOI:10.1007/s00330-019-06601-1
摘要

To investigate externally validated magnetic resonance (MR)–based and computed tomography (CT)–based machine learning (ML) models for grading clear cell renal cell carcinoma (ccRCC). Patients with pathologically proven ccRCC in 2009–2018 were retrospectively included for model development and internal validation; patients from another independent institution and The Cancer Imaging Archive dataset were included for external validation. Features were extracted from T1-weighted, T2-weighted, corticomedullary-phase (CMP), and nephrographic-phase (NP) MR as well as precontrast-phase (PCP), CMP, and NP CT. CatBoost was used for ML-model investigation. The reproducibility of texture features was assessed using intraclass correlation coefficient (ICC). Accuracy (ACC) was used for ML-model performance evaluation. Twenty external and 440 internal cases were included. Among 368 and 276 texture features from MR and CT, 322 and 250 features with good to excellent reproducibility (ICC ≥ 0.75) were included for ML-model development. The best MR- and CT-based ML models satisfactorily distinguished high- from low-grade ccRCCs in internal (MR-ACC = 73% and CT-ACC = 79%) and external (MR-ACC = 74% and CT-ACC = 69%) validation. Compared to single-sequence or single-phase images, the classifiers based on all-sequence MR (71% to 73% in internal and 64% to 74% in external validation) and all-phase CT (77% to 79% in internal and 61% to 69% in external validation) images had significant increases in ACC. MR- and CT-based ML models are valuable noninvasive techniques for discriminating high- from low-grade ccRCCs, and multiparameter MR- and multiphase CT–based classifiers are potentially superior to those based on single-sequence or single-phase imaging. • Both the MR- and CT-based machine learning models are reliable predictors for differentiating high- from low-grade ccRCCs. • ML models based on multiparameter MR sequences and multiphase CT images potentially outperform those based on single-sequence or single-phase images in ccRCC grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
3秒前
5秒前
Kurt发布了新的文献求助10
5秒前
7秒前
8秒前
可靠的冰烟完成签到,获得积分10
10秒前
Yummy完成签到,获得积分10
10秒前
无情的匪发布了新的文献求助10
11秒前
flyingpig发布了新的文献求助10
11秒前
专注的可乐完成签到,获得积分10
13秒前
15秒前
小蘑菇应助李振博采纳,获得10
17秒前
顾矜应助沉尘采纳,获得10
18秒前
思源应助王学成采纳,获得10
19秒前
果果发布了新的文献求助10
21秒前
CodeCraft应助白立轩采纳,获得10
25秒前
Christina完成签到,获得积分10
26秒前
Akim应助大葱鸭采纳,获得10
26秒前
英姑应助萝卜采纳,获得10
27秒前
27秒前
27秒前
小蘑菇应助小远采纳,获得10
28秒前
lyh完成签到,获得积分10
29秒前
45度人发布了新的文献求助20
31秒前
31秒前
策策发布了新的文献求助10
32秒前
34秒前
35秒前
任性英姑完成签到,获得积分10
36秒前
喜悦香薇完成签到 ,获得积分10
38秒前
SciGPT应助45度人采纳,获得20
38秒前
李振博发布了新的文献求助10
39秒前
小远发布了新的文献求助10
39秒前
1123完成签到,获得积分10
40秒前
小白完成签到,获得积分10
40秒前
jiwoong完成签到 ,获得积分10
41秒前
研友_Lmg1gZ完成签到,获得积分10
45秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474