已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics

医学 神经组阅片室 组内相关 肾透明细胞癌 磁共振成像 放射科 再现性 无线电技术 肾细胞癌 清除单元格 病理 核医学 临床心理学 统计 精神科 数学 心理测量学 神经学
作者
Enming Cui,Zhuoyong Li,Changyi Ma,Qing Li,Lei Yi,Yong Lan,Juan Yu,Zhipeng Zhou,Ronggang Li,Wansheng Long,Fan Lin
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (5): 2912-2921 被引量:93
标识
DOI:10.1007/s00330-019-06601-1
摘要

To investigate externally validated magnetic resonance (MR)–based and computed tomography (CT)–based machine learning (ML) models for grading clear cell renal cell carcinoma (ccRCC). Patients with pathologically proven ccRCC in 2009–2018 were retrospectively included for model development and internal validation; patients from another independent institution and The Cancer Imaging Archive dataset were included for external validation. Features were extracted from T1-weighted, T2-weighted, corticomedullary-phase (CMP), and nephrographic-phase (NP) MR as well as precontrast-phase (PCP), CMP, and NP CT. CatBoost was used for ML-model investigation. The reproducibility of texture features was assessed using intraclass correlation coefficient (ICC). Accuracy (ACC) was used for ML-model performance evaluation. Twenty external and 440 internal cases were included. Among 368 and 276 texture features from MR and CT, 322 and 250 features with good to excellent reproducibility (ICC ≥ 0.75) were included for ML-model development. The best MR- and CT-based ML models satisfactorily distinguished high- from low-grade ccRCCs in internal (MR-ACC = 73% and CT-ACC = 79%) and external (MR-ACC = 74% and CT-ACC = 69%) validation. Compared to single-sequence or single-phase images, the classifiers based on all-sequence MR (71% to 73% in internal and 64% to 74% in external validation) and all-phase CT (77% to 79% in internal and 61% to 69% in external validation) images had significant increases in ACC. MR- and CT-based ML models are valuable noninvasive techniques for discriminating high- from low-grade ccRCCs, and multiparameter MR- and multiphase CT–based classifiers are potentially superior to those based on single-sequence or single-phase imaging. • Both the MR- and CT-based machine learning models are reliable predictors for differentiating high- from low-grade ccRCCs. • ML models based on multiparameter MR sequences and multiphase CT images potentially outperform those based on single-sequence or single-phase images in ccRCC grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
丁一完成签到,获得积分10
2秒前
Hu发布了新的文献求助10
4秒前
不安吐司关注了科研通微信公众号
4秒前
长医德莱文完成签到,获得积分10
8秒前
Hu完成签到,获得积分10
9秒前
金不换完成签到 ,获得积分10
11秒前
忧郁小刺猬完成签到,获得积分10
13秒前
15秒前
15秒前
不安吐司发布了新的文献求助10
19秒前
PSY发布了新的文献求助10
19秒前
亦hcy发布了新的文献求助10
21秒前
25秒前
wswswsws完成签到,获得积分10
27秒前
Forizix发布了新的文献求助10
31秒前
限量版小祸害完成签到 ,获得积分10
34秒前
我心飞翔完成签到 ,获得积分10
36秒前
Ava应助PSY采纳,获得10
37秒前
39秒前
harry完成签到,获得积分10
40秒前
zzz完成签到,获得积分10
42秒前
咔酱完成签到,获得积分10
45秒前
菜根谭完成签到 ,获得积分10
49秒前
自信的网络完成签到 ,获得积分10
51秒前
54秒前
伶俐惜萱发布了新的文献求助10
59秒前
1分钟前
高大厉完成签到,获得积分10
1分钟前
1分钟前
奔跑的小熊完成签到 ,获得积分10
1分钟前
1分钟前
Walter发布了新的文献求助20
1分钟前
陶醉土豆发布了新的文献求助10
1分钟前
于铁梅发布了新的文献求助10
1分钟前
1分钟前
小星完成签到 ,获得积分10
1分钟前
Ava应助小小旭呀采纳,获得10
1分钟前
儒雅完成签到 ,获得积分10
1分钟前
Watsun发布了新的文献求助50
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356373
求助须知:如何正确求助?哪些是违规求助? 4488177
关于积分的说明 13971732
捐赠科研通 4389001
什么是DOI,文献DOI怎么找? 2411329
邀请新用户注册赠送积分活动 1403907
关于科研通互助平台的介绍 1377741