Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics

医学 神经组阅片室 组内相关 肾透明细胞癌 磁共振成像 放射科 再现性 无线电技术 肾细胞癌 清除单元格 病理 核医学 临床心理学 统计 精神科 数学 心理测量学 神经学
作者
Enming Cui,Zhuoyong Li,Changyi Ma,Qing Li,Lei Yi,Yong Lan,Juan Yu,Zhipeng Zhou,Ronggang Li,Wansheng Long,Fan Lin
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (5): 2912-2921 被引量:91
标识
DOI:10.1007/s00330-019-06601-1
摘要

To investigate externally validated magnetic resonance (MR)–based and computed tomography (CT)–based machine learning (ML) models for grading clear cell renal cell carcinoma (ccRCC). Patients with pathologically proven ccRCC in 2009–2018 were retrospectively included for model development and internal validation; patients from another independent institution and The Cancer Imaging Archive dataset were included for external validation. Features were extracted from T1-weighted, T2-weighted, corticomedullary-phase (CMP), and nephrographic-phase (NP) MR as well as precontrast-phase (PCP), CMP, and NP CT. CatBoost was used for ML-model investigation. The reproducibility of texture features was assessed using intraclass correlation coefficient (ICC). Accuracy (ACC) was used for ML-model performance evaluation. Twenty external and 440 internal cases were included. Among 368 and 276 texture features from MR and CT, 322 and 250 features with good to excellent reproducibility (ICC ≥ 0.75) were included for ML-model development. The best MR- and CT-based ML models satisfactorily distinguished high- from low-grade ccRCCs in internal (MR-ACC = 73% and CT-ACC = 79%) and external (MR-ACC = 74% and CT-ACC = 69%) validation. Compared to single-sequence or single-phase images, the classifiers based on all-sequence MR (71% to 73% in internal and 64% to 74% in external validation) and all-phase CT (77% to 79% in internal and 61% to 69% in external validation) images had significant increases in ACC. MR- and CT-based ML models are valuable noninvasive techniques for discriminating high- from low-grade ccRCCs, and multiparameter MR- and multiphase CT–based classifiers are potentially superior to those based on single-sequence or single-phase imaging. • Both the MR- and CT-based machine learning models are reliable predictors for differentiating high- from low-grade ccRCCs. • ML models based on multiparameter MR sequences and multiphase CT images potentially outperform those based on single-sequence or single-phase images in ccRCC grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元元完成签到,获得积分10
刚刚
Cicilia完成签到 ,获得积分10
刚刚
马儿扎哈发布了新的文献求助10
刚刚
刚刚
彩色方盒发布了新的文献求助10
刚刚
咸鱼悠悠发布了新的文献求助10
刚刚
悦耳若云发布了新的文献求助10
刚刚
Erin完成签到 ,获得积分10
1秒前
arture完成签到,获得积分20
1秒前
1秒前
嘻嘻嘻发布了新的文献求助10
1秒前
CuvJ发布了新的文献求助10
2秒前
RB发布了新的文献求助10
2秒前
不懈奋进应助rioo采纳,获得30
2秒前
快乐难敌发布了新的文献求助10
2秒前
科研通AI5应助哈哈采纳,获得10
3秒前
富贵儿完成签到 ,获得积分10
3秒前
3秒前
Rian完成签到 ,获得积分10
3秒前
jiajia完成签到,获得积分10
3秒前
3秒前
zd完成签到,获得积分10
3秒前
3秒前
黄焖鸡米饭完成签到,获得积分10
4秒前
果果完成签到,获得积分10
4秒前
星辰大海应助小咩采纳,获得10
4秒前
4秒前
2025迷发布了新的文献求助30
4秒前
4秒前
4秒前
zbh022完成签到 ,获得积分10
4秒前
wanderer应助小臭屁采纳,获得10
5秒前
Lucas应助李特猪猪仔采纳,获得10
5秒前
小西完成签到,获得积分10
5秒前
科研通AI5应助gao采纳,获得10
5秒前
小蘑菇应助肌肉干细胞采纳,获得10
5秒前
科研通AI2S应助滾滾采纳,获得10
6秒前
TT完成签到,获得积分10
6秒前
你终硕发布了新的文献求助30
6秒前
yyf完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572422
求助须知:如何正确求助?哪些是违规求助? 3993137
关于积分的说明 12361436
捐赠科研通 3666284
什么是DOI,文献DOI怎么找? 2020629
邀请新用户注册赠送积分活动 1054898
科研通“疑难数据库(出版商)”最低求助积分说明 942305