The IRE1 signaling pathway is implicated in I/R injury. However, little is known about the involvement of this pathway in low-dose LPS treatment of myocardial I/R injury. Thus, an attempt was made to determine the relationship between the IRE1 pathway and I/R injury using rats or in vitro H9C2 cell myocardial I/R injury models.Sprague-Dawley rats and cultured H9C2 cells were pretreated with low-dose LPS and subjected to myocardial I/R injury models.Low-dose LPS did not affect normal rat or cellular function. Compared with the I/R group, treatment with LPS attenuated myocardial apoptosis, decreased plasma LDH and CK-MB activities, reduced myocardium infarct size, and downregulated caspase-3 expression. Moreover, the protein or mRNA expression levels of the IRE1 signaling pathway-related proteins Grp78, IRE1, p-ASK1, ASK1, p-JNK, and JNK were notably increased during I/R injury but significantly decreased by low-dose LPS treatment both in rats and in H9C2 cells.Low-dose LPS exhibited therapeutic effects in myocardial I/R injury. Most importantly, the cardioprotective mechanism of low-dose LPS may be associated with the IRE1 signaling pathway.