Protein–protein interactions prediction based on ensemble deep neural networks

计算机科学 杠杆(统计) 人工智能 人工神经网络 深层神经网络 机器学习 灵敏度(控制系统) 集合预报 模式识别(心理学) 数据挖掘 电子工程 工程类
作者
Long Zhang,Guoxian Yu,Dawen Xia,Jun Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:324: 10-19 被引量:101
标识
DOI:10.1016/j.neucom.2018.02.097
摘要

Protein–protein interactions (PPIs) are of vital importance to most biological processes. Plenty of PPIs have been identified by wet-lab experiments in the past decades, but there are still abundant uncovered PPIs. Furthermore, wet-lab experiments are expensive and limited by the adopted experimental protocols. Although various computational models have been proposed to automatically predict PPIs and provided reliable interactions for experimental verification, the problem is still far from being solved. Novel and competent models are still anticipated. In this study, a neural network based approach called EnsDNN (Ensemble Deep Neural Networks) is proposed to predict PPIs based on different representations of amino acid sequences. Particularly, EnsDNN separately uses auto covariance descriptor, local descriptor, and multi-scale continuous and discontinuous local descriptor, to represent and explore the pattern of interactions between sequentially distant and spatially close amino acid residues. It then trains deep neural networks (DNNs) with different configurations based on each descriptor. Next, EnsDNN integrates these DNNs into an ensemble predictor to leverage complimentary information of these descriptors and of DNNs, and to predict potential PPIs. EnsDNN achieves superior performance with accuracy of 95.29%, sensitivity of 95.12%, and precision of 95.45% on predicting PPIs of Saccharomyces cerevisiae. Results on other five independent PPI datasets also demonstrate that EnsDNN gets better prediction performance than other related comparing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的流沙完成签到,获得积分10
3秒前
3秒前
贤惠的黑裤完成签到,获得积分10
4秒前
4秒前
笑点低中心完成签到,获得积分10
6秒前
szj完成签到,获得积分10
11秒前
12秒前
煜琪驳回了wanci应助
15秒前
17秒前
谦让寄容完成签到,获得积分20
18秒前
onehome应助Li采纳,获得10
19秒前
20秒前
尔信发布了新的文献求助10
23秒前
谦让寄容发布了新的文献求助10
23秒前
遥远的尧应助科研通管家采纳,获得10
24秒前
健忘英姑应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
健忘英姑应助科研通管家采纳,获得10
25秒前
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
oceanao应助科研通管家采纳,获得10
25秒前
25秒前
26秒前
O泡果奶完成签到 ,获得积分10
28秒前
求道的竹子完成签到,获得积分10
28秒前
28秒前
KK完成签到,获得积分10
29秒前
32秒前
无剑发布了新的文献求助10
33秒前
严小之发布了新的文献求助10
34秒前
35秒前
漂亮忆南完成签到 ,获得积分10
37秒前
maque4004完成签到,获得积分10
37秒前
晚上好发布了新的文献求助10
37秒前
江沐晗完成签到,获得积分10
38秒前
41秒前
阿妮完成签到,获得积分10
44秒前
lm18994782585完成签到,获得积分10
45秒前
46秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814960
关于积分的说明 7907257
捐赠科研通 2474588
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228