Protein–protein interactions prediction based on ensemble deep neural networks

计算机科学 杠杆(统计) 人工智能 人工神经网络 深层神经网络 机器学习 灵敏度(控制系统) 集合预报 模式识别(心理学) 数据挖掘 电子工程 工程类
作者
Long Zhang,Guoxian Yu,Dawen Xia,Jun Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:324: 10-19 被引量:101
标识
DOI:10.1016/j.neucom.2018.02.097
摘要

Protein–protein interactions (PPIs) are of vital importance to most biological processes. Plenty of PPIs have been identified by wet-lab experiments in the past decades, but there are still abundant uncovered PPIs. Furthermore, wet-lab experiments are expensive and limited by the adopted experimental protocols. Although various computational models have been proposed to automatically predict PPIs and provided reliable interactions for experimental verification, the problem is still far from being solved. Novel and competent models are still anticipated. In this study, a neural network based approach called EnsDNN (Ensemble Deep Neural Networks) is proposed to predict PPIs based on different representations of amino acid sequences. Particularly, EnsDNN separately uses auto covariance descriptor, local descriptor, and multi-scale continuous and discontinuous local descriptor, to represent and explore the pattern of interactions between sequentially distant and spatially close amino acid residues. It then trains deep neural networks (DNNs) with different configurations based on each descriptor. Next, EnsDNN integrates these DNNs into an ensemble predictor to leverage complimentary information of these descriptors and of DNNs, and to predict potential PPIs. EnsDNN achieves superior performance with accuracy of 95.29%, sensitivity of 95.12%, and precision of 95.45% on predicting PPIs of Saccharomyces cerevisiae. Results on other five independent PPI datasets also demonstrate that EnsDNN gets better prediction performance than other related comparing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你是我的唯一完成签到 ,获得积分10
1秒前
酷炫元风发布了新的文献求助10
2秒前
上官若男应助Tingting采纳,获得10
2秒前
田様应助四叶草采纳,获得10
2秒前
yh完成签到,获得积分10
4秒前
小仓发布了新的文献求助10
4秒前
烟花应助BZJ采纳,获得10
4秒前
田様应助忧虑的白凡采纳,获得10
5秒前
5秒前
得一完成签到,获得积分10
5秒前
蒋念寒发布了新的文献求助10
5秒前
kurisu完成签到,获得积分10
5秒前
yh发布了新的文献求助10
6秒前
颖zi发布了新的文献求助10
6秒前
生动路人完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
烟花应助famelc采纳,获得10
10秒前
wanwan应助小西采纳,获得30
11秒前
12秒前
nn发布了新的文献求助10
12秒前
12秒前
张文静发布了新的文献求助10
14秒前
JamesPei应助蒋念寒采纳,获得10
15秒前
16秒前
16秒前
天天快乐应助Hubert采纳,获得10
16秒前
今后应助Maestro_S采纳,获得10
17秒前
光亮笑柳完成签到,获得积分10
17秒前
医痞子发布了新的文献求助10
18秒前
紫熊完成签到,获得积分10
18秒前
chydlbb发布了新的文献求助30
19秒前
19秒前
蹦出通通完成签到,获得积分10
20秒前
梨理栗发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474