控制理论(社会学)
加速度
稳健性(进化)
计算机科学
控制器(灌溉)
自适应控制
前馈
编码器
有界函数
控制工程
数学
工程类
人工智能
物理
基因
操作系统
生物
经典力学
生物化学
数学分析
化学
农学
控制(管理)
作者
Sanem Evren Han,Mustafa Ünel
标识
DOI:10.1177/0142331218780224
摘要
The robust periodic trajectory tracking problem is tackled by employing acceleration feedback in a hybrid learning-adaptive controller for n-rigid link robotic manipulators subject to parameter uncertainties and unknown periodic dynamics with a known period. Learning and adaptive feedforward terms are designed to compensate for periodic and aperiodic disturbances. The acceleration feedback is incorporated into both learning and adaptive controllers to provide higher stiffness to the system against unknown periodic disturbances and robustness to parameter uncertainties. A cascaded high gain observer is used to obtain reliable position, velocity and acceleration signals from noisy encoder measurements. A closed-loop stability proof is provided where it is shown that all system signals remain bounded and the proposed hybrid controller achieves global asymptotic position tracking. Results obtained from a high fidelity simulation model demonstrate the validity and effectiveness of the developed hybrid controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI