清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeCoach: Deep Learning-based Coaching for Badminton Player Assessment

计算机科学 指导 人工智能 深度学习 人机交互 心理学 心理治疗师
作者
Indrajeet Ghosh,Sreenivasan Ramasamy Ramamurthy,Avijoy Chakma,Nirmalya Roy
出处
期刊:Pervasive and Mobile Computing [Elsevier BV]
卷期号:83: 101608-101608 被引量:19
标识
DOI:10.1016/j.pmcj.2022.101608
摘要

Wearable devices have gained immense popularity among various pervasive computing and Internet-of-Things (IoT) applications in the past decade. Sports analytics researchers recently focused on improving a player's performance to help devise a winning strategy based on the player's gameplay. Especially in a racquet-based badminton sport, it is assumed that handling the racquet during the gameplay is one of the primary reasons to influence the players' performance. On the contrary, we posit that the players' stance, body movements, and posture are equally significant in evaluating a player's performance during the game. A shot characterized by a recommended posture, stance, and body movements allows a player to play a stroke efficiently, thus aiding the player in guiding the shuttle to strategic spots and making it difficult for the opponent to return the shot and score a point. Relying on this hypothesis, we propose DeCoach, a data-driven framework that leverages the stance and posture of the players and ranks them based on their performances. In this effort, we first employ a deep learning-based algorithm to classify the strokes and stances of the players. Secondly, we propose a distance-based methodology to compare the obtained stance of a player with that of a professional player. Finally, we devise a deep learning-based regressor to predict the player's performance which commences with ranking based on their performance. We evaluate DeCoach using our in-house dataset, Badminton Activity Recognition (BAR) Dataset that is collected using inertial measurement unit (IMU) sensors by placing them on the upper and lower limbs of the players. The BAR dataset is collected from 11 players in the controlled and uncontrolled environment settings for 12 frequently played shots in the game. Empirical results indicate that DeCoach achieves 89.09% accuracy for strokes detection and R2 score of 88.84% in estimating the players' performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
11秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
Yound发布了新的文献求助10
21秒前
Yound完成签到,获得积分20
35秒前
量子星尘发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助50
43秒前
detective发布了新的文献求助10
43秒前
juan完成签到 ,获得积分10
46秒前
小二郎应助Yound采纳,获得10
46秒前
51秒前
detective完成签到,获得积分10
51秒前
lzzj发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助10
59秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助哈哈采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
lzzj发布了新的文献求助10
1分钟前
1分钟前
哈哈发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
科研通AI5应助刻苦的源智采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
YJM完成签到,获得积分10
2分钟前
orixero应助cheng采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
111完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
斯文败类应助快乐的睫毛采纳,获得10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666407
求助须知:如何正确求助?哪些是违规求助? 3225444
关于积分的说明 9763009
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188