示意图
计算机科学
尺寸
集成电路布局
过程(计算)
还原(数学)
重新使用
网络列表
电子工程
计算机工程
集成电路
计算机硬件
工程类
艺术
几何学
数学
废物管理
视觉艺术
操作系统
作者
Zhikai Wang,Wenfei Hu,Jingbo Zhou,Wenyuan Zhang,Ruitao Wang,Jian Zhang,Dejing Dou,Zuochang Ye,Yan Wang
标识
DOI:10.1109/isqed54688.2022.9806251
摘要
Although schematic-level optimization methods have been well studied in the literature, limited to layout generation and parasitic extraction, few tools can provide reliable post-layout level optimization of analog/RF post-layout. In fact, in order to quickly identify feasible regions and avoid unnecessary simulations during sizing optimization process, the surrogate model which can predict post-layout simulation performance metrics must be built. However, building a accurate model is yet a challenging task because of the conflict between sufficient samples and expensive simulation costs. Fortunately, schematic simulation costs are more cheaper than post-layout simulation costs, and certain similarities of circuit behaviors exist in between the schematic and post-layout simulation stage. Motivated by these observations, we propose a Fine-tuning based Model Fusion (FMF) technique to reuse some knowledge from early data. We first copy a pre-trained Artificial Neural Networks (ANN) model parameters which is carefully trained by abundant schematic-level samples, and fine-tune this model by few post-layout samples. Then, the number of post-layout samples required for training can be greatly reduced. Finally, we conduct experiments on three different analog/RF circuits and verify the efficiency of FMF. FMF can achieve a more than 9x sample reduction and highest modeling accuracy over traditional modeling techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI