Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism

电池(电) 健康状况 可靠性工程 蒙特卡罗方法 可靠性(半导体) 区间(图论) 计算机科学 内阻 锂离子电池 电池容量 期限(时间) 模拟 工程类 统计 功率(物理) 组合数学 物理 量子力学 数学
作者
Fu‐Kwun Wang,Zemenu Endalamaw Amogne,Jia‐Hong Chou,Cheng Tseng
出处
期刊:Energy [Elsevier]
卷期号:254: 124344-124344 被引量:95
标识
DOI:10.1016/j.energy.2022.124344
摘要

As battery management systems are widely used in industrial applications, it is important to accurately predict the online remaining useful life (RUL) of batteries. Due to side reactions, the battery will continue to decline in capacity and internal resistance throughout its life cycle. Additionally, battery systems require reliable and accurate battery health diagnostics and timely maintenance and replacement. To obtain accurate RUL prediction, we propose a bidirectional long short-term memory with attention mechanism (Bi-LSTM-AM) model to predict online RUL by continuously updating the model parameters. In this study, normalized capacity was used as state of health (SOH). Multi-step ahead prediction using a sliding window method was used to obtain the SOH estimates. Six cylindrical and prismatic lithium-ion (Li-ion) batteries were used to evaluate the performance of the proposed model. Using our online RUL prediction model, the relative errors for the six Li-ion batteries are 0.57%, 0.54%, 0.56%, 0%, 1.27% and 1.41%, respectively. To evaluate the reliability of the proposed model, the prediction interval for the RUL prediction is also provided using the Monte Carlo dropout approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
keyan应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
hibye完成签到,获得积分10
1秒前
所所应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得150
1秒前
Hello应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
李健应助陈章zz采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
MCS发布了新的文献求助10
2秒前
yznfly应助曲曲采纳,获得150
2秒前
Asteroid发布了新的文献求助10
2秒前
2秒前
雪落年轮发布了新的文献求助10
2秒前
3秒前
天天快乐应助西米露采纳,获得10
3秒前
zz发布了新的文献求助10
3秒前
张振宇完成签到,获得积分10
3秒前
周五发布了新的文献求助10
4秒前
4秒前
Wenn发布了新的文献求助10
4秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928