Applications of graph convolutional networks in computer vision

计算机科学 可解释性 人工智能 图形 分割 领域(数学) 机器学习 语义学(计算机科学) 计算机视觉 模式识别(心理学) 理论计算机科学 数学 程序设计语言 纯数学
作者
Pingping Cao,Zeqi Zhu,Ziyuan Wang,Yanping Zhu,Qiang Niu
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:34 (16): 13387-13405 被引量:23
标识
DOI:10.1007/s00521-022-07368-1
摘要

Graph Convolutional Network (GCN) which models the potential relationship between non-Euclidean spatial data has attracted researchers’ attention in deep learning in recent years. It has been widely used in different computer vision tasks by modeling the latent space, topology, semantics, and other information in Euclidean spatial data and has achieved significant success. To better understand the work principles and future GCN applications in the computer vision field, this study reviewed the basic principles of GCN, summarized the difficulties and solutions using GCN in different visual tasks, and introduced in detail the methods for constructing graphs from the Euclidean spatial data in different visual tasks. At the same time, the review divided the application of GCN in basic visual tasks into image recognition, object detection, semantic segmentation, instance segmentation and object tracking. The role and performance of GCN in basic visual tasks were summarized and compared in detail for different tasks. This review emphasizes that the application of GCN in computer vision faces three challenges: computational complexity, the paradigm of constructing graphs from the Euclidean spatial data, and the interpretability of the model. Finally, this review proposes two future trends of GCN in the vision field, namely model lightweight and fusing GCN with other models to improve the performance of the visual model and meet the higher requirements of vision tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
faker完成签到,获得积分10
2秒前
5秒前
鳗鱼如松发布了新的文献求助10
5秒前
机读卡完成签到,获得积分10
6秒前
颖涵发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
眯眯眼的逍遥完成签到,获得积分10
8秒前
霸气安筠完成签到,获得积分10
11秒前
11秒前
11秒前
小二郎应助颖涵采纳,获得10
13秒前
pxy发布了新的文献求助10
13秒前
13秒前
www发布了新的文献求助10
14秒前
酷波er应助嘻嘻嘻采纳,获得10
14秒前
14秒前
沉静立辉完成签到,获得积分10
14秒前
15秒前
15秒前
李爱国应助enndyou采纳,获得10
16秒前
千跃应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
千跃应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
Ava应助犹豫大侠采纳,获得10
16秒前
liz_完成签到,获得积分10
16秒前
Jasper应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
summer3moon应助科研通管家采纳,获得10
17秒前
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
小树完成签到,获得积分10
18秒前
sya发布了新的文献求助10
19秒前
Santiana发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093