Applications of graph convolutional networks in computer vision

计算机科学 可解释性 人工智能 图形 分割 领域(数学) 机器学习 语义学(计算机科学) 计算机视觉 模式识别(心理学) 理论计算机科学 数学 程序设计语言 纯数学
作者
Pingping Cao,Zeqi Zhu,Ziyuan Wang,Yanping Zhu,Qiang Niu
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:34 (16): 13387-13405 被引量:23
标识
DOI:10.1007/s00521-022-07368-1
摘要

Graph Convolutional Network (GCN) which models the potential relationship between non-Euclidean spatial data has attracted researchers’ attention in deep learning in recent years. It has been widely used in different computer vision tasks by modeling the latent space, topology, semantics, and other information in Euclidean spatial data and has achieved significant success. To better understand the work principles and future GCN applications in the computer vision field, this study reviewed the basic principles of GCN, summarized the difficulties and solutions using GCN in different visual tasks, and introduced in detail the methods for constructing graphs from the Euclidean spatial data in different visual tasks. At the same time, the review divided the application of GCN in basic visual tasks into image recognition, object detection, semantic segmentation, instance segmentation and object tracking. The role and performance of GCN in basic visual tasks were summarized and compared in detail for different tasks. This review emphasizes that the application of GCN in computer vision faces three challenges: computational complexity, the paradigm of constructing graphs from the Euclidean spatial data, and the interpretability of the model. Finally, this review proposes two future trends of GCN in the vision field, namely model lightweight and fusing GCN with other models to improve the performance of the visual model and meet the higher requirements of vision tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的又亦完成签到,获得积分20
刚刚
zhuhaishan发布了新的文献求助10
刚刚
Phoenix ZHANG完成签到 ,获得积分10
刚刚
嘻嘻完成签到,获得积分10
1秒前
研友_ZAVbe8应助fantasy采纳,获得100
2秒前
Aqua完成签到,获得积分10
3秒前
3秒前
5秒前
嘻嘻发布了新的文献求助10
9秒前
炙热靖雁发布了新的文献求助40
10秒前
11秒前
瑾玉发布了新的文献求助10
12秒前
旖旎完成签到 ,获得积分10
17秒前
Mn发布了新的文献求助10
18秒前
18秒前
慕青应助Freja采纳,获得10
18秒前
Shuo Yang发布了新的文献求助10
19秒前
ye完成签到,获得积分10
20秒前
Logan完成签到,获得积分10
21秒前
瑾玉完成签到,获得积分10
21秒前
dmy完成签到 ,获得积分10
26秒前
万能图书馆应助Freja采纳,获得10
29秒前
羊羊羊完成签到,获得积分10
30秒前
30秒前
ZhaoPeng完成签到,获得积分10
31秒前
31秒前
Akim应助科研通管家采纳,获得10
33秒前
wen123应助科研通管家采纳,获得10
33秒前
wanci应助科研通管家采纳,获得10
34秒前
华仔应助科研通管家采纳,获得10
34秒前
拾光完成签到,获得积分10
35秒前
年轻的吐司完成签到,获得积分10
39秒前
陶醉铁身完成签到,获得积分20
40秒前
方格子完成签到 ,获得积分10
40秒前
完美世界应助Freja采纳,获得10
41秒前
大福完成签到,获得积分10
41秒前
陶醉铁身发布了新的文献求助10
43秒前
44秒前
DUAN完成签到,获得积分10
45秒前
一天不学浑身难受完成签到 ,获得积分10
50秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057308
求助须知:如何正确求助?哪些是违规求助? 2713802
关于积分的说明 7437402
捐赠科研通 2358921
什么是DOI,文献DOI怎么找? 1249607
科研通“疑难数据库(出版商)”最低求助积分说明 607190
版权声明 596314