Rechargeable Aqueous Mn‐Metal Battery Enabled by Inorganic–Organic Interfaces

阳极 氧化还原 电解质 电池(电) 水溶液 材料科学 化学工程 金属 无机化学 阴极 电化学 化学 电极 冶金 有机化学 物理化学 功率(物理) 物理 量子力学 工程类
作者
Qi Yang,Xiaofeng Qu,Huilin Cui,Xincheng He,Yuan Shao,Yong Zhang,Xun Guo,Ao Chen,Ze Chen,Rong Zhang,Deyang Kong,Zhicong Shi,Jun Liu,Jieshan Qiu,Chunyi Zhi
出处
期刊:Angewandte Chemie [Wiley]
卷期号:61 (35) 被引量:40
标识
DOI:10.1002/anie.202206471
摘要

Abstract Aqueous batteries that use metal anodes exhibit maximum anodic capacity, whereas the energy density is still unsatisfactory partially due to the high redox potential of the metal anode. Current metal anodes are plagued by the dilemma that the redox potential of Zn is not low enough, whereas Al, Mg, and others with excessively low redox potential cannot work properly in aqueous electrolytes. Mn metal with a suitably low redox potential is a promising candidate, which was rarely explored before. Here, we report a rechargeable aqueous Mn‐metal battery enabled by a well‐designed electrolyte and robust inorganic–organic interfaces. The inorganic Sn‐based interface with a bottom‐up microstructure was constructed to preliminarily suppress water decomposition. With this bubble‐free interface, the organic interface can be formed via an esterification reaction of sucrose triggered by acyl chloride in the electrolyte, generating a dense physical shield that isolates water while permitting Mn 2+ diffusion. Hence, a Mn symmetric cell achieves a superior plating/stripping stability for 200 hours, and a Mn||V 2 O 5 battery maintains approximately 100 % capacity after 200 cycles. Moreover, the Mn||V 2 O 5 battery realizes a much higher output voltage than that of the Zn||V 2 O 5 battery, evidencing the possibility of increasing the energy density through using a Mn anode. This work develops a systematic strategy to stabilize a Mn‐metal anode for Mn‐metal batteries, opening a new door towards enhanced voltage of aqueous batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bingxinl完成签到,获得积分10
2秒前
隔壁老王完成签到,获得积分10
4秒前
feezy完成签到,获得积分10
5秒前
专注的胡萝卜完成签到 ,获得积分10
7秒前
7秒前
8秒前
华仔应助zhang采纳,获得10
8秒前
futianyu完成签到 ,获得积分10
10秒前
俏皮的一德完成签到,获得积分10
10秒前
10秒前
10秒前
归尘发布了新的文献求助10
12秒前
落后的小蕊完成签到,获得积分10
12秒前
完美世界应助阿海采纳,获得10
12秒前
科研熊大发布了新的文献求助10
13秒前
777hhh发布了新的文献求助10
14秒前
大气的谷梦完成签到,获得积分10
15秒前
清秀豪英发布了新的文献求助10
16秒前
sunishope完成签到 ,获得积分10
18秒前
都市隶人完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
777应助快乐123采纳,获得10
22秒前
22秒前
Augenstern完成签到,获得积分10
23秒前
玻璃瓶完成签到,获得积分10
23秒前
小螺号滴滴吹完成签到,获得积分10
25秒前
wangzai发布了新的文献求助10
26秒前
嘟嘟发布了新的文献求助10
27秒前
局内人发布了新的文献求助10
27秒前
28秒前
欢呼山雁发布了新的文献求助10
28秒前
29秒前
30秒前
30秒前
32秒前
35秒前
可爱的函函应助wangzai采纳,获得10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490