Robust sparse Bayesian learning for broad learning with application to high-speed railway track monitoring

计算机科学 稳健性(进化) 概率逻辑 机器学习 人工智能 参数统计 贝叶斯网络 贝叶斯推理 人工神经网络 贝叶斯概率 算法 数据挖掘 数学 生物化学 化学 统计 基因
作者
Chenyue Wang,Jingze Gao,Hui Li,Chao Lin,James L. Beck,Yong Huang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (2): 1256-1272 被引量:4
标识
DOI:10.1177/14759217221104224
摘要

In this study, we focus on non-parametric probabilistic modeling for general regression analysis with large amounts of data and present an algorithm called the robust sparse Bayesian broad learning system. Robust sparse Bayesian learning is employed to infer the posterior distribution of the sparse connecting weight parameters in broad learning system. Regardless of the number of candidate features, our algorithm can always produce a compact subset of hidden-layer neurons of almost the same size learned from the data, which allows the algorithm to automatically adjust the model complexity of the network. This algorithm not only solves the regression problem of large amounts of data robustly but also possesses high computational efficiency and low requirements for computing hardware. Moreover, as a Bayesian probabilistic algorithm, it can provide the posterior uncertainty quantification of the predicted output, giving a measure of prediction confidence. The proposed algorithm is verified using simulated data generated by a benchmark function and also applied in non-parametric probabilistic modeling using high-speed railway track monitoring data. The results show that compared with several existing neural network algorithms, our proposed algorithm has strong model robustness, excellent prediction accuracy, and computational efficiency for regression analysis with large amounts of data, and has the potential to be widely used in general regression problems in science and engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
秋山伊夫完成签到,获得积分10
1秒前
入门的橙橙完成签到 ,获得积分10
1秒前
BONBON发布了新的文献求助10
2秒前
4秒前
TOM完成签到,获得积分10
4秒前
隐形曼青应助欣喜访旋采纳,获得10
5秒前
852应助Millie采纳,获得10
5秒前
龍Ryu完成签到,获得积分10
6秒前
内向凌兰发布了新的文献求助10
7秒前
伍秋望完成签到,获得积分10
7秒前
8秒前
9秒前
跳跃发布了新的文献求助10
10秒前
持卿应助宗磬采纳,获得20
10秒前
10秒前
花生油炒花生米完成签到 ,获得积分10
10秒前
Riki完成签到,获得积分10
12秒前
虚幻白玉发布了新的文献求助10
12秒前
德行天下完成签到,获得积分10
12秒前
Jenny应助lan采纳,获得10
13秒前
fztnh完成签到,获得积分10
13秒前
上官若男应助lyz666采纳,获得10
13秒前
顾念完成签到 ,获得积分10
13秒前
277发布了新的文献求助10
14秒前
小二郎应助GCD采纳,获得10
15秒前
hhhhhh完成签到 ,获得积分10
15秒前
甜味拾荒者完成签到,获得积分10
17秒前
小二郎应助BONBON采纳,获得10
17秒前
18秒前
charllie完成签到 ,获得积分10
18秒前
空禅yew完成签到,获得积分10
19秒前
坚强亦丝应助跳跃采纳,获得10
21秒前
英俊的铭应助cc采纳,获得10
21秒前
huangsan完成签到,获得积分10
21秒前
匹诺曹完成签到,获得积分10
21秒前
22秒前
华仔应助进取拼搏采纳,获得10
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808